ndk: Add headers and libraries for API level 11 (Honeycomb)

HC added the following:

- <android/asset_manager.h>: new functions to deal with 64-bit file offsets/sizes.

- <android/input.h>: new AMETA_XXX constants

- <android/keycodes.h>: new AKEYCODE_XXX constants

- <android/native_activity.h>: Added obbPath to the ANativeActivity structure.
  Note that this doesn't break the ABI because the structure is always
  allocated by the system.

Change-Id: I61a03d7b8a839318e5f0d8074d2272ba874219b7
This commit is contained in:
David 'Digit' Turner
2011-02-09 23:13:33 +01:00
parent 3ecb5b903c
commit aa27646057
6 changed files with 1598 additions and 0 deletions

Binary file not shown.

View File

@@ -0,0 +1,153 @@
AAssetDir_close
AAssetDir_getNextFileName
AAssetDir_rewind
AAssetManager_fromJava
AAssetManager_open
AAssetManager_openDir
AAsset_close
AAsset_getBuffer
AAsset_getLength
AAsset_getLength64
AAsset_getRemainingLength
AAsset_getRemainingLength64
AAsset_isAllocated
AAsset_openFileDescriptor
AAsset_openFileDescriptor64
AAsset_read
AAsset_seek
AAsset_seek64
AConfiguration_copy
AConfiguration_delete
AConfiguration_diff
AConfiguration_fromAssetManager
AConfiguration_getCountry
AConfiguration_getDensity
AConfiguration_getKeyboard
AConfiguration_getKeysHidden
AConfiguration_getLanguage
AConfiguration_getMcc
AConfiguration_getMnc
AConfiguration_getNavHidden
AConfiguration_getNavigation
AConfiguration_getOrientation
AConfiguration_getScreenLong
AConfiguration_getScreenSize
AConfiguration_getSdkVersion
AConfiguration_getTouchscreen
AConfiguration_getUiModeNight
AConfiguration_getUiModeType
AConfiguration_isBetterThan
AConfiguration_match
AConfiguration_new
AConfiguration_setCountry
AConfiguration_setDensity
AConfiguration_setKeyboard
AConfiguration_setKeysHidden
AConfiguration_setLanguage
AConfiguration_setMcc
AConfiguration_setMnc
AConfiguration_setNavHidden
AConfiguration_setNavigation
AConfiguration_setOrientation
AConfiguration_setScreenLong
AConfiguration_setScreenSize
AConfiguration_setSdkVersion
AConfiguration_setTouchscreen
AConfiguration_setUiModeNight
AConfiguration_setUiModeType
AInputEvent_getDeviceId
AInputEvent_getSource
AInputEvent_getType
AInputQueue_attachLooper
AInputQueue_detachLooper
AInputQueue_finishEvent
AInputQueue_getEvent
AInputQueue_hasEvents
AInputQueue_preDispatchEvent
AKeyEvent_getAction
AKeyEvent_getDownTime
AKeyEvent_getEventTime
AKeyEvent_getFlags
AKeyEvent_getKeyCode
AKeyEvent_getMetaState
AKeyEvent_getRepeatCount
AKeyEvent_getScanCode
ALooper_acquire
ALooper_addFd
ALooper_forThread
ALooper_pollAll
ALooper_pollOnce
ALooper_prepare
ALooper_release
ALooper_removeFd
ALooper_wake
AMotionEvent_getAction
AMotionEvent_getDownTime
AMotionEvent_getEdgeFlags
AMotionEvent_getEventTime
AMotionEvent_getFlags
AMotionEvent_getHistoricalEventTime
AMotionEvent_getHistoricalPressure
AMotionEvent_getHistoricalSize
AMotionEvent_getHistoricalX
AMotionEvent_getHistoricalY
AMotionEvent_getHistorySize
AMotionEvent_getMetaState
AMotionEvent_getOrientation
AMotionEvent_getPointerCount
AMotionEvent_getPointerId
AMotionEvent_getPressure
AMotionEvent_getRawX
AMotionEvent_getRawY
AMotionEvent_getSize
AMotionEvent_getToolMajor
AMotionEvent_getToolMinor
AMotionEvent_getTouchMajor
AMotionEvent_getTouchMinor
AMotionEvent_getX
AMotionEvent_getXOffset
AMotionEvent_getXPrecision
AMotionEvent_getY
AMotionEvent_getYOffset
AMotionEvent_getYPrecision
ANativeActivity_finish
ANativeActivity_hideSoftInput
ANativeActivity_setWindowFlags
ANativeActivity_setWindowFormat
ANativeActivity_showSoftInput
ANativeWindow_acquire
ANativeWindow_fromSurface
ANativeWindow_getFormat
ANativeWindow_getHeight
ANativeWindow_getWidth
ANativeWindow_lock
ANativeWindow_release
ANativeWindow_setBuffersGeometry
ANativeWindow_unlockAndPost
AObbInfo_delete
AObbInfo_getFlags
AObbInfo_getPackageName
AObbInfo_getVersion
AObbScanner_getObbInfo
ASensorEventQueue_disableSensor
ASensorEventQueue_enableSensor
ASensorEventQueue_getEvents
ASensorEventQueue_hasEvents
ASensorEventQueue_setEventRate
ASensorManager_createEventQueue
ASensorManager_destroyEventQueue
ASensorManager_getDefaultSensor
ASensorManager_getInstance
ASensorManager_getSensorList
ASensor_getMinDelay
ASensor_getName
ASensor_getResolution
ASensor_getType
ASensor_getVendor
AStorageManager_delete
AStorageManager_getMountedObbPath
AStorageManager_isObbMounted
AStorageManager_mountObb
AStorageManager_new
AStorageManager_unmountObb

View File

@@ -0,0 +1,175 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_ASSET_MANAGER_H
#define ANDROID_ASSET_MANAGER_H
#ifdef __cplusplus
extern "C" {
#endif
struct AAssetManager;
typedef struct AAssetManager AAssetManager;
struct AAssetDir;
typedef struct AAssetDir AAssetDir;
struct AAsset;
typedef struct AAsset AAsset;
/* Available modes for opening assets */
enum {
AASSET_MODE_UNKNOWN = 0,
AASSET_MODE_RANDOM = 1,
AASSET_MODE_STREAMING = 2,
AASSET_MODE_BUFFER = 3
};
/**
* Open the named directory within the asset hierarchy. The directory can then
* be inspected with the AAssetDir functions. To open the top-level directory,
* pass in "" as the dirName.
*
* The object returned here should be freed by calling AAssetDir_close().
*/
AAssetDir* AAssetManager_openDir(AAssetManager* mgr, const char* dirName);
/**
* Open an asset.
*
* The object returned here should be freed by calling AAsset_close().
*/
AAsset* AAssetManager_open(AAssetManager* mgr, const char* filename, int mode);
/**
* Iterate over the files in an asset directory. A NULL string is returned
* when all the file names have been returned.
*
* The returned file name is suitable for passing to AAssetManager_open().
*
* The string returned here is owned by the AssetDir implementation and is not
* guaranteed to remain valid if any other calls are made on this AAssetDir
* instance.
*/
const char* AAssetDir_getNextFileName(AAssetDir* assetDir);
/**
* Reset the iteration state of AAssetDir_getNextFileName() to the beginning.
*/
void AAssetDir_rewind(AAssetDir* assetDir);
/**
* Close an opened AAssetDir, freeing any related resources.
*/
void AAssetDir_close(AAssetDir* assetDir);
/**
* Attempt to read 'count' bytes of data from the current offset.
*
* Returns the number of bytes read, zero on EOF, or < 0 on error.
*/
int AAsset_read(AAsset* asset, void* buf, size_t count);
/**
* Seek to the specified offset within the asset data. 'whence' uses the
* same constants as lseek()/fseek().
*
* Returns the new position on success, or (off_t) -1 on error.
*/
off_t AAsset_seek(AAsset* asset, off_t offset, int whence);
/**
* Seek to the specified offset within the asset data. 'whence' uses the
* same constants as lseek()/fseek().
*
* Uses 64-bit data type for large files as opposed to the 32-bit type used
* by AAsset_seek.
*
* Returns the new position on success, or (off64_t) -1 on error.
*/
off64_t AAsset_seek64(AAsset* asset, off64_t offset, int whence);
/**
* Close the asset, freeing all associated resources.
*/
void AAsset_close(AAsset* asset);
/**
* Get a pointer to a buffer holding the entire contents of the assset.
*
* Returns NULL on failure.
*/
const void* AAsset_getBuffer(AAsset* asset);
/**
* Report the total size of the asset data.
*/
off_t AAsset_getLength(AAsset* asset);
/**
* Report the total size of the asset data. Reports the size using a 64-bit
* number insted of 32-bit as AAsset_getLength.
*/
off64_t AAsset_getLength64(AAsset* asset);
/**
* Report the total amount of asset data that can be read from the current position.
*/
off_t AAsset_getRemainingLength(AAsset* asset);
/**
* Report the total amount of asset data that can be read from the current position.
*
* Uses a 64-bit number instead of a 32-bit number as AAsset_getRemainingLength does.
*/
off64_t AAsset_getRemainingLength64(AAsset* asset);
/**
* Open a new file descriptor that can be used to read the asset data. If the
* start or length cannot be represented by a 32-bit number, it will be
* truncated. If the file is large, use AAsset_openFileDescriptor64 instead.
*
* Returns < 0 if direct fd access is not possible (for example, if the asset is
* compressed).
*/
int AAsset_openFileDescriptor(AAsset* asset, off_t* outStart, off_t* outLength);
/**
* Open a new file descriptor that can be used to read the asset data.
*
* Uses a 64-bit number for the offset and length instead of 32-bit instead of
* as AAsset_openFileDescriptor does.
*
* Returns < 0 if direct fd access is not possible (for example, if the asset is
* compressed).
*/
int AAsset_openFileDescriptor64(AAsset* asset, off64_t* outStart, off64_t* outLength);
/**
* Returns whether this asset's internal buffer is allocated in ordinary RAM (i.e. not
* mmapped).
*/
int AAsset_isAllocated(AAsset* asset);
#ifdef __cplusplus
};
#endif
#endif // ANDROID_ASSET_MANAGER_H

View File

@@ -0,0 +1,724 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ANDROID_INPUT_H
#define _ANDROID_INPUT_H
/******************************************************************
*
* IMPORTANT NOTICE:
*
* This file is part of Android's set of stable system headers
* exposed by the Android NDK (Native Development Kit).
*
* Third-party source AND binary code relies on the definitions
* here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES.
*
* - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES)
* - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS
* - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY
* - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES
*/
/*
* Structures and functions to receive and process input events in
* native code.
*
* NOTE: These functions MUST be implemented by /system/lib/libui.so
*/
#include <stdint.h>
#include <sys/types.h>
#include <android/keycodes.h>
#include <android/looper.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Key states (may be returned by queries about the current state of a
* particular key code, scan code or switch).
*/
enum {
/* The key state is unknown or the requested key itself is not supported. */
AKEY_STATE_UNKNOWN = -1,
/* The key is up. */
AKEY_STATE_UP = 0,
/* The key is down. */
AKEY_STATE_DOWN = 1,
/* The key is down but is a virtual key press that is being emulated by the system. */
AKEY_STATE_VIRTUAL = 2
};
/*
* Meta key / modifer state.
*/
enum {
/* No meta keys are pressed. */
AMETA_NONE = 0,
/* This mask is used to check whether one of the ALT meta keys is pressed. */
AMETA_ALT_ON = 0x02,
/* This mask is used to check whether the left ALT meta key is pressed. */
AMETA_ALT_LEFT_ON = 0x10,
/* This mask is used to check whether the right ALT meta key is pressed. */
AMETA_ALT_RIGHT_ON = 0x20,
/* This mask is used to check whether one of the SHIFT meta keys is pressed. */
AMETA_SHIFT_ON = 0x01,
/* This mask is used to check whether the left SHIFT meta key is pressed. */
AMETA_SHIFT_LEFT_ON = 0x40,
/* This mask is used to check whether the right SHIFT meta key is pressed. */
AMETA_SHIFT_RIGHT_ON = 0x80,
/* This mask is used to check whether the SYM meta key is pressed. */
AMETA_SYM_ON = 0x04,
/* This mask is used to check whether the FUNCTION meta key is pressed. */
AMETA_FUNCTION_ON = 0x08,
/* This mask is used to check whether one of the CTRL meta keys is pressed. */
AMETA_CTRL_ON = 0x1000,
/* This mask is used to check whether the left CTRL meta key is pressed. */
AMETA_CTRL_LEFT_ON = 0x2000,
/* This mask is used to check whether the right CTRL meta key is pressed. */
AMETA_CTRL_RIGHT_ON = 0x4000,
/* This mask is used to check whether one of the META meta keys is pressed. */
AMETA_META_ON = 0x10000,
/* This mask is used to check whether the left META meta key is pressed. */
AMETA_META_LEFT_ON = 0x20000,
/* This mask is used to check whether the right META meta key is pressed. */
AMETA_META_RIGHT_ON = 0x40000,
/* This mask is used to check whether the CAPS LOCK meta key is on. */
AMETA_CAPS_LOCK_ON = 0x100000,
/* This mask is used to check whether the NUM LOCK meta key is on. */
AMETA_NUM_LOCK_ON = 0x200000,
/* This mask is used to check whether the SCROLL LOCK meta key is on. */
AMETA_SCROLL_LOCK_ON = 0x400000,
};
/*
* Input events.
*
* Input events are opaque structures. Use the provided accessors functions to
* read their properties.
*/
struct AInputEvent;
typedef struct AInputEvent AInputEvent;
/*
* Input event types.
*/
enum {
/* Indicates that the input event is a key event. */
AINPUT_EVENT_TYPE_KEY = 1,
/* Indicates that the input event is a motion event. */
AINPUT_EVENT_TYPE_MOTION = 2
};
/*
* Key event actions.
*/
enum {
/* The key has been pressed down. */
AKEY_EVENT_ACTION_DOWN = 0,
/* The key has been released. */
AKEY_EVENT_ACTION_UP = 1,
/* Multiple duplicate key events have occurred in a row, or a complex string is
* being delivered. The repeat_count property of the key event contains the number
* of times the given key code should be executed.
*/
AKEY_EVENT_ACTION_MULTIPLE = 2
};
/*
* Key event flags.
*/
enum {
/* This mask is set if the device woke because of this key event. */
AKEY_EVENT_FLAG_WOKE_HERE = 0x1,
/* This mask is set if the key event was generated by a software keyboard. */
AKEY_EVENT_FLAG_SOFT_KEYBOARD = 0x2,
/* This mask is set if we don't want the key event to cause us to leave touch mode. */
AKEY_EVENT_FLAG_KEEP_TOUCH_MODE = 0x4,
/* This mask is set if an event was known to come from a trusted part
* of the system. That is, the event is known to come from the user,
* and could not have been spoofed by a third party component. */
AKEY_EVENT_FLAG_FROM_SYSTEM = 0x8,
/* This mask is used for compatibility, to identify enter keys that are
* coming from an IME whose enter key has been auto-labelled "next" or
* "done". This allows TextView to dispatch these as normal enter keys
* for old applications, but still do the appropriate action when
* receiving them. */
AKEY_EVENT_FLAG_EDITOR_ACTION = 0x10,
/* When associated with up key events, this indicates that the key press
* has been canceled. Typically this is used with virtual touch screen
* keys, where the user can slide from the virtual key area on to the
* display: in that case, the application will receive a canceled up
* event and should not perform the action normally associated with the
* key. Note that for this to work, the application can not perform an
* action for a key until it receives an up or the long press timeout has
* expired. */
AKEY_EVENT_FLAG_CANCELED = 0x20,
/* This key event was generated by a virtual (on-screen) hard key area.
* Typically this is an area of the touchscreen, outside of the regular
* display, dedicated to "hardware" buttons. */
AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY = 0x40,
/* This flag is set for the first key repeat that occurs after the
* long press timeout. */
AKEY_EVENT_FLAG_LONG_PRESS = 0x80,
/* Set when a key event has AKEY_EVENT_FLAG_CANCELED set because a long
* press action was executed while it was down. */
AKEY_EVENT_FLAG_CANCELED_LONG_PRESS = 0x100,
/* Set for AKEY_EVENT_ACTION_UP when this event's key code is still being
* tracked from its initial down. That is, somebody requested that tracking
* started on the key down and a long press has not caused
* the tracking to be canceled. */
AKEY_EVENT_FLAG_TRACKING = 0x200,
/* Set when a key event has been synthesized to implement default behavior
* for an event that the application did not handle.
* Fallback key events are generated by unhandled trackball motions
* (to emulate a directional keypad) and by certain unhandled key presses
* that are declared in the key map (such as special function numeric keypad
* keys when numlock is off). */
AKEY_EVENT_FLAG_FALLBACK = 0x400,
};
/*
* Motion event actions.
*/
/* Bit shift for the action bits holding the pointer index as
* defined by AMOTION_EVENT_ACTION_POINTER_INDEX_MASK.
*/
#define AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT 8
enum {
/* Bit mask of the parts of the action code that are the action itself.
*/
AMOTION_EVENT_ACTION_MASK = 0xff,
/* Bits in the action code that represent a pointer index, used with
* AMOTION_EVENT_ACTION_POINTER_DOWN and AMOTION_EVENT_ACTION_POINTER_UP. Shifting
* down by AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT provides the actual pointer
* index where the data for the pointer going up or down can be found.
*/
AMOTION_EVENT_ACTION_POINTER_INDEX_MASK = 0xff00,
/* A pressed gesture has started, the motion contains the initial starting location.
*/
AMOTION_EVENT_ACTION_DOWN = 0,
/* A pressed gesture has finished, the motion contains the final release location
* as well as any intermediate points since the last down or move event.
*/
AMOTION_EVENT_ACTION_UP = 1,
/* A change has happened during a press gesture (between AMOTION_EVENT_ACTION_DOWN and
* AMOTION_EVENT_ACTION_UP). The motion contains the most recent point, as well as
* any intermediate points since the last down or move event.
*/
AMOTION_EVENT_ACTION_MOVE = 2,
/* The current gesture has been aborted.
* You will not receive any more points in it. You should treat this as
* an up event, but not perform any action that you normally would.
*/
AMOTION_EVENT_ACTION_CANCEL = 3,
/* A movement has happened outside of the normal bounds of the UI element.
* This does not provide a full gesture, but only the initial location of the movement/touch.
*/
AMOTION_EVENT_ACTION_OUTSIDE = 4,
/* A non-primary pointer has gone down.
* The bits in AMOTION_EVENT_ACTION_POINTER_INDEX_MASK indicate which pointer changed.
*/
AMOTION_EVENT_ACTION_POINTER_DOWN = 5,
/* A non-primary pointer has gone up.
* The bits in AMOTION_EVENT_ACTION_POINTER_INDEX_MASK indicate which pointer changed.
*/
AMOTION_EVENT_ACTION_POINTER_UP = 6
};
/*
* Motion event flags.
*/
enum {
/* This flag indicates that the window that received this motion event is partly
* or wholly obscured by another visible window above it. This flag is set to true
* even if the event did not directly pass through the obscured area.
* A security sensitive application can check this flag to identify situations in which
* a malicious application may have covered up part of its content for the purpose
* of misleading the user or hijacking touches. An appropriate response might be
* to drop the suspect touches or to take additional precautions to confirm the user's
* actual intent.
*/
AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED = 0x1,
};
/*
* Motion event edge touch flags.
*/
enum {
/* No edges intersected */
AMOTION_EVENT_EDGE_FLAG_NONE = 0,
/* Flag indicating the motion event intersected the top edge of the screen. */
AMOTION_EVENT_EDGE_FLAG_TOP = 0x01,
/* Flag indicating the motion event intersected the bottom edge of the screen. */
AMOTION_EVENT_EDGE_FLAG_BOTTOM = 0x02,
/* Flag indicating the motion event intersected the left edge of the screen. */
AMOTION_EVENT_EDGE_FLAG_LEFT = 0x04,
/* Flag indicating the motion event intersected the right edge of the screen. */
AMOTION_EVENT_EDGE_FLAG_RIGHT = 0x08
};
/*
* Input sources.
*
* Refer to the documentation on android.view.InputDevice for more details about input sources
* and their correct interpretation.
*/
enum {
AINPUT_SOURCE_CLASS_MASK = 0x000000ff,
AINPUT_SOURCE_CLASS_BUTTON = 0x00000001,
AINPUT_SOURCE_CLASS_POINTER = 0x00000002,
AINPUT_SOURCE_CLASS_NAVIGATION = 0x00000004,
AINPUT_SOURCE_CLASS_POSITION = 0x00000008,
};
enum {
AINPUT_SOURCE_UNKNOWN = 0x00000000,
AINPUT_SOURCE_KEYBOARD = 0x00000100 | AINPUT_SOURCE_CLASS_BUTTON,
AINPUT_SOURCE_DPAD = 0x00000200 | AINPUT_SOURCE_CLASS_BUTTON,
AINPUT_SOURCE_TOUCHSCREEN = 0x00001000 | AINPUT_SOURCE_CLASS_POINTER,
AINPUT_SOURCE_MOUSE = 0x00002000 | AINPUT_SOURCE_CLASS_POINTER,
AINPUT_SOURCE_TRACKBALL = 0x00010000 | AINPUT_SOURCE_CLASS_NAVIGATION,
AINPUT_SOURCE_TOUCHPAD = 0x00100000 | AINPUT_SOURCE_CLASS_POSITION,
AINPUT_SOURCE_ANY = 0xffffff00,
};
/*
* Keyboard types.
*
* Refer to the documentation on android.view.InputDevice for more details.
*/
enum {
AINPUT_KEYBOARD_TYPE_NONE = 0,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC = 1,
AINPUT_KEYBOARD_TYPE_ALPHABETIC = 2,
};
/*
* Constants used to retrieve information about the range of motion for a particular
* coordinate of a motion event.
*
* Refer to the documentation on android.view.InputDevice for more details about input sources
* and their correct interpretation.
*/
enum {
AINPUT_MOTION_RANGE_X = 0,
AINPUT_MOTION_RANGE_Y = 1,
AINPUT_MOTION_RANGE_PRESSURE = 2,
AINPUT_MOTION_RANGE_SIZE = 3,
AINPUT_MOTION_RANGE_TOUCH_MAJOR = 4,
AINPUT_MOTION_RANGE_TOUCH_MINOR = 5,
AINPUT_MOTION_RANGE_TOOL_MAJOR = 6,
AINPUT_MOTION_RANGE_TOOL_MINOR = 7,
AINPUT_MOTION_RANGE_ORIENTATION = 8,
};
/*
* Input event accessors.
*
* Note that most functions can only be used on input events that are of a given type.
* Calling these functions on input events of other types will yield undefined behavior.
*/
/*** Accessors for all input events. ***/
/* Get the input event type. */
int32_t AInputEvent_getType(const AInputEvent* event);
/* Get the id for the device that an input event came from.
*
* Input events can be generated by multiple different input devices.
* Use the input device id to obtain information about the input
* device that was responsible for generating a particular event.
*
* An input device id of 0 indicates that the event didn't come from a physical device;
* other numbers are arbitrary and you shouldn't depend on the values.
* Use the provided input device query API to obtain information about input devices.
*/
int32_t AInputEvent_getDeviceId(const AInputEvent* event);
/* Get the input event source. */
int32_t AInputEvent_getSource(const AInputEvent* event);
/*** Accessors for key events only. ***/
/* Get the key event action. */
int32_t AKeyEvent_getAction(const AInputEvent* key_event);
/* Get the key event flags. */
int32_t AKeyEvent_getFlags(const AInputEvent* key_event);
/* Get the key code of the key event.
* This is the physical key that was pressed, not the Unicode character. */
int32_t AKeyEvent_getKeyCode(const AInputEvent* key_event);
/* Get the hardware key id of this key event.
* These values are not reliable and vary from device to device. */
int32_t AKeyEvent_getScanCode(const AInputEvent* key_event);
/* Get the meta key state. */
int32_t AKeyEvent_getMetaState(const AInputEvent* key_event);
/* Get the repeat count of the event.
* For both key up an key down events, this is the number of times the key has
* repeated with the first down starting at 0 and counting up from there. For
* multiple key events, this is the number of down/up pairs that have occurred. */
int32_t AKeyEvent_getRepeatCount(const AInputEvent* key_event);
/* Get the time of the most recent key down event, in the
* java.lang.System.nanoTime() time base. If this is a down event,
* this will be the same as eventTime.
* Note that when chording keys, this value is the down time of the most recently
* pressed key, which may not be the same physical key of this event. */
int64_t AKeyEvent_getDownTime(const AInputEvent* key_event);
/* Get the time this event occurred, in the
* java.lang.System.nanoTime() time base. */
int64_t AKeyEvent_getEventTime(const AInputEvent* key_event);
/*** Accessors for motion events only. ***/
/* Get the combined motion event action code and pointer index. */
int32_t AMotionEvent_getAction(const AInputEvent* motion_event);
/* Get the motion event flags. */
int32_t AMotionEvent_getFlags(const AInputEvent* motion_event);
/* Get the state of any meta / modifier keys that were in effect when the
* event was generated. */
int32_t AMotionEvent_getMetaState(const AInputEvent* motion_event);
/* Get a bitfield indicating which edges, if any, were touched by this motion event.
* For touch events, clients can use this to determine if the user's finger was
* touching the edge of the display. */
int32_t AMotionEvent_getEdgeFlags(const AInputEvent* motion_event);
/* Get the time when the user originally pressed down to start a stream of
* position events, in the java.lang.System.nanoTime() time base. */
int64_t AMotionEvent_getDownTime(const AInputEvent* motion_event);
/* Get the time when this specific event was generated,
* in the java.lang.System.nanoTime() time base. */
int64_t AMotionEvent_getEventTime(const AInputEvent* motion_event);
/* Get the X coordinate offset.
* For touch events on the screen, this is the delta that was added to the raw
* screen coordinates to adjust for the absolute position of the containing windows
* and views. */
float AMotionEvent_getXOffset(const AInputEvent* motion_event);
/* Get the precision of the Y coordinates being reported.
* For touch events on the screen, this is the delta that was added to the raw
* screen coordinates to adjust for the absolute position of the containing windows
* and views. */
float AMotionEvent_getYOffset(const AInputEvent* motion_event);
/* Get the precision of the X coordinates being reported.
* You can multiply this number with an X coordinate sample to find the
* actual hardware value of the X coordinate. */
float AMotionEvent_getXPrecision(const AInputEvent* motion_event);
/* Get the precision of the Y coordinates being reported.
* You can multiply this number with a Y coordinate sample to find the
* actual hardware value of the Y coordinate. */
float AMotionEvent_getYPrecision(const AInputEvent* motion_event);
/* Get the number of pointers of data contained in this event.
* Always >= 1. */
size_t AMotionEvent_getPointerCount(const AInputEvent* motion_event);
/* Get the pointer identifier associated with a particular pointer
* data index is this event. The identifier tells you the actual pointer
* number associated with the data, accounting for individual pointers
* going up and down since the start of the current gesture. */
int32_t AMotionEvent_getPointerId(const AInputEvent* motion_event, size_t pointer_index);
/* Get the original raw X coordinate of this event.
* For touch events on the screen, this is the original location of the event
* on the screen, before it had been adjusted for the containing window
* and views. */
float AMotionEvent_getRawX(const AInputEvent* motion_event, size_t pointer_index);
/* Get the original raw X coordinate of this event.
* For touch events on the screen, this is the original location of the event
* on the screen, before it had been adjusted for the containing window
* and views. */
float AMotionEvent_getRawY(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current X coordinate of this event for the given pointer index.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getX(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current Y coordinate of this event for the given pointer index.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getY(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current pressure of this event for the given pointer index.
* The pressure generally ranges from 0 (no pressure at all) to 1 (normal pressure),
* however values higher than 1 may be generated depending on the calibration of
* the input device. */
float AMotionEvent_getPressure(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current scaled value of the approximate size for the given pointer index.
* This represents some approximation of the area of the screen being
* pressed; the actual value in pixels corresponding to the
* touch is normalized with the device specific range of values
* and scaled to a value between 0 and 1. The value of size can be used to
* determine fat touch events. */
float AMotionEvent_getSize(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current length of the major axis of an ellipse that describes the touch area
* at the point of contact for the given pointer index. */
float AMotionEvent_getTouchMajor(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current length of the minor axis of an ellipse that describes the touch area
* at the point of contact for the given pointer index. */
float AMotionEvent_getTouchMinor(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current length of the major axis of an ellipse that describes the size
* of the approaching tool for the given pointer index.
* The tool area represents the estimated size of the finger or pen that is
* touching the device independent of its actual touch area at the point of contact. */
float AMotionEvent_getToolMajor(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current length of the minor axis of an ellipse that describes the size
* of the approaching tool for the given pointer index.
* The tool area represents the estimated size of the finger or pen that is
* touching the device independent of its actual touch area at the point of contact. */
float AMotionEvent_getToolMinor(const AInputEvent* motion_event, size_t pointer_index);
/* Get the current orientation of the touch area and tool area in radians clockwise from
* vertical for the given pointer index.
* An angle of 0 degrees indicates that the major axis of contact is oriented
* upwards, is perfectly circular or is of unknown orientation. A positive angle
* indicates that the major axis of contact is oriented to the right. A negative angle
* indicates that the major axis of contact is oriented to the left.
* The full range is from -PI/2 radians (finger pointing fully left) to PI/2 radians
* (finger pointing fully right). */
float AMotionEvent_getOrientation(const AInputEvent* motion_event, size_t pointer_index);
/* Get the number of historical points in this event. These are movements that
* have occurred between this event and the previous event. This only applies
* to AMOTION_EVENT_ACTION_MOVE events -- all other actions will have a size of 0.
* Historical samples are indexed from oldest to newest. */
size_t AMotionEvent_getHistorySize(const AInputEvent* motion_event);
/* Get the time that a historical movement occurred between this event and
* the previous event, in the java.lang.System.nanoTime() time base. */
int64_t AMotionEvent_getHistoricalEventTime(AInputEvent* motion_event,
size_t history_index);
/* Get the historical raw X coordinate of this event for the given pointer index that
* occurred between this event and the previous motion event.
* For touch events on the screen, this is the original location of the event
* on the screen, before it had been adjusted for the containing window
* and views.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getHistoricalRawX(const AInputEvent* motion_event, size_t pointer_index);
/* Get the historical raw Y coordinate of this event for the given pointer index that
* occurred between this event and the previous motion event.
* For touch events on the screen, this is the original location of the event
* on the screen, before it had been adjusted for the containing window
* and views.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getHistoricalRawY(const AInputEvent* motion_event, size_t pointer_index);
/* Get the historical X coordinate of this event for the given pointer index that
* occurred between this event and the previous motion event.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getHistoricalX(AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical Y coordinate of this event for the given pointer index that
* occurred between this event and the previous motion event.
* Whole numbers are pixels; the value may have a fraction for input devices
* that are sub-pixel precise. */
float AMotionEvent_getHistoricalY(AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical pressure of this event for the given pointer index that
* occurred between this event and the previous motion event.
* The pressure generally ranges from 0 (no pressure at all) to 1 (normal pressure),
* however values higher than 1 may be generated depending on the calibration of
* the input device. */
float AMotionEvent_getHistoricalPressure(AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the current scaled value of the approximate size for the given pointer index that
* occurred between this event and the previous motion event.
* This represents some approximation of the area of the screen being
* pressed; the actual value in pixels corresponding to the
* touch is normalized with the device specific range of values
* and scaled to a value between 0 and 1. The value of size can be used to
* determine fat touch events. */
float AMotionEvent_getHistoricalSize(AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical length of the major axis of an ellipse that describes the touch area
* at the point of contact for the given pointer index that
* occurred between this event and the previous motion event. */
float AMotionEvent_getHistoricalTouchMajor(const AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical length of the minor axis of an ellipse that describes the touch area
* at the point of contact for the given pointer index that
* occurred between this event and the previous motion event. */
float AMotionEvent_getHistoricalTouchMinor(const AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical length of the major axis of an ellipse that describes the size
* of the approaching tool for the given pointer index that
* occurred between this event and the previous motion event.
* The tool area represents the estimated size of the finger or pen that is
* touching the device independent of its actual touch area at the point of contact. */
float AMotionEvent_getHistoricalToolMajor(const AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical length of the minor axis of an ellipse that describes the size
* of the approaching tool for the given pointer index that
* occurred between this event and the previous motion event.
* The tool area represents the estimated size of the finger or pen that is
* touching the device independent of its actual touch area at the point of contact. */
float AMotionEvent_getHistoricalToolMinor(const AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/* Get the historical orientation of the touch area and tool area in radians clockwise from
* vertical for the given pointer index that
* occurred between this event and the previous motion event.
* An angle of 0 degrees indicates that the major axis of contact is oriented
* upwards, is perfectly circular or is of unknown orientation. A positive angle
* indicates that the major axis of contact is oriented to the right. A negative angle
* indicates that the major axis of contact is oriented to the left.
* The full range is from -PI/2 radians (finger pointing fully left) to PI/2 radians
* (finger pointing fully right). */
float AMotionEvent_getHistoricalOrientation(const AInputEvent* motion_event, size_t pointer_index,
size_t history_index);
/*
* Input queue
*
* An input queue is the facility through which you retrieve input
* events.
*/
struct AInputQueue;
typedef struct AInputQueue AInputQueue;
/*
* Add this input queue to a looper for processing. See
* ALooper_addFd() for information on the ident, callback, and data params.
*/
void AInputQueue_attachLooper(AInputQueue* queue, ALooper* looper,
int ident, ALooper_callbackFunc callback, void* data);
/*
* Remove the input queue from the looper it is currently attached to.
*/
void AInputQueue_detachLooper(AInputQueue* queue);
/*
* Returns true if there are one or more events available in the
* input queue. Returns 1 if the queue has events; 0 if
* it does not have events; and a negative value if there is an error.
*/
int32_t AInputQueue_hasEvents(AInputQueue* queue);
/*
* Returns the next available event from the queue. Returns a negative
* value if no events are available or an error has occurred.
*/
int32_t AInputQueue_getEvent(AInputQueue* queue, AInputEvent** outEvent);
/*
* Sends the key for standard pre-dispatching -- that is, possibly deliver
* it to the current IME to be consumed before the app. Returns 0 if it
* was not pre-dispatched, meaning you can process it right now. If non-zero
* is returned, you must abandon the current event processing and allow the
* event to appear again in the event queue (if it does not get consumed during
* pre-dispatching).
*/
int32_t AInputQueue_preDispatchEvent(AInputQueue* queue, AInputEvent* event);
/*
* Report that dispatching has finished with the given event.
* This must be called after receiving an event with AInputQueue_get_event().
*/
void AInputQueue_finishEvent(AInputQueue* queue, AInputEvent* event, int handled);
#ifdef __cplusplus
}
#endif
#endif // _ANDROID_INPUT_H

View File

@@ -0,0 +1,243 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ANDROID_KEYCODES_H
#define _ANDROID_KEYCODES_H
/******************************************************************
*
* IMPORTANT NOTICE:
*
* This file is part of Android's set of stable system headers
* exposed by the Android NDK (Native Development Kit).
*
* Third-party source AND binary code relies on the definitions
* here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES.
*
* - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES)
* - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS
* - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY
* - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES
*/
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Key codes.
*/
enum {
AKEYCODE_UNKNOWN = 0,
AKEYCODE_SOFT_LEFT = 1,
AKEYCODE_SOFT_RIGHT = 2,
AKEYCODE_HOME = 3,
AKEYCODE_BACK = 4,
AKEYCODE_CALL = 5,
AKEYCODE_ENDCALL = 6,
AKEYCODE_0 = 7,
AKEYCODE_1 = 8,
AKEYCODE_2 = 9,
AKEYCODE_3 = 10,
AKEYCODE_4 = 11,
AKEYCODE_5 = 12,
AKEYCODE_6 = 13,
AKEYCODE_7 = 14,
AKEYCODE_8 = 15,
AKEYCODE_9 = 16,
AKEYCODE_STAR = 17,
AKEYCODE_POUND = 18,
AKEYCODE_DPAD_UP = 19,
AKEYCODE_DPAD_DOWN = 20,
AKEYCODE_DPAD_LEFT = 21,
AKEYCODE_DPAD_RIGHT = 22,
AKEYCODE_DPAD_CENTER = 23,
AKEYCODE_VOLUME_UP = 24,
AKEYCODE_VOLUME_DOWN = 25,
AKEYCODE_POWER = 26,
AKEYCODE_CAMERA = 27,
AKEYCODE_CLEAR = 28,
AKEYCODE_A = 29,
AKEYCODE_B = 30,
AKEYCODE_C = 31,
AKEYCODE_D = 32,
AKEYCODE_E = 33,
AKEYCODE_F = 34,
AKEYCODE_G = 35,
AKEYCODE_H = 36,
AKEYCODE_I = 37,
AKEYCODE_J = 38,
AKEYCODE_K = 39,
AKEYCODE_L = 40,
AKEYCODE_M = 41,
AKEYCODE_N = 42,
AKEYCODE_O = 43,
AKEYCODE_P = 44,
AKEYCODE_Q = 45,
AKEYCODE_R = 46,
AKEYCODE_S = 47,
AKEYCODE_T = 48,
AKEYCODE_U = 49,
AKEYCODE_V = 50,
AKEYCODE_W = 51,
AKEYCODE_X = 52,
AKEYCODE_Y = 53,
AKEYCODE_Z = 54,
AKEYCODE_COMMA = 55,
AKEYCODE_PERIOD = 56,
AKEYCODE_ALT_LEFT = 57,
AKEYCODE_ALT_RIGHT = 58,
AKEYCODE_SHIFT_LEFT = 59,
AKEYCODE_SHIFT_RIGHT = 60,
AKEYCODE_TAB = 61,
AKEYCODE_SPACE = 62,
AKEYCODE_SYM = 63,
AKEYCODE_EXPLORER = 64,
AKEYCODE_ENVELOPE = 65,
AKEYCODE_ENTER = 66,
AKEYCODE_DEL = 67,
AKEYCODE_GRAVE = 68,
AKEYCODE_MINUS = 69,
AKEYCODE_EQUALS = 70,
AKEYCODE_LEFT_BRACKET = 71,
AKEYCODE_RIGHT_BRACKET = 72,
AKEYCODE_BACKSLASH = 73,
AKEYCODE_SEMICOLON = 74,
AKEYCODE_APOSTROPHE = 75,
AKEYCODE_SLASH = 76,
AKEYCODE_AT = 77,
AKEYCODE_NUM = 78,
AKEYCODE_HEADSETHOOK = 79,
AKEYCODE_FOCUS = 80, // *Camera* focus
AKEYCODE_PLUS = 81,
AKEYCODE_MENU = 82,
AKEYCODE_NOTIFICATION = 83,
AKEYCODE_SEARCH = 84,
AKEYCODE_MEDIA_PLAY_PAUSE= 85,
AKEYCODE_MEDIA_STOP = 86,
AKEYCODE_MEDIA_NEXT = 87,
AKEYCODE_MEDIA_PREVIOUS = 88,
AKEYCODE_MEDIA_REWIND = 89,
AKEYCODE_MEDIA_FAST_FORWARD = 90,
AKEYCODE_MUTE = 91,
AKEYCODE_PAGE_UP = 92,
AKEYCODE_PAGE_DOWN = 93,
AKEYCODE_PICTSYMBOLS = 94,
AKEYCODE_SWITCH_CHARSET = 95,
AKEYCODE_BUTTON_A = 96,
AKEYCODE_BUTTON_B = 97,
AKEYCODE_BUTTON_C = 98,
AKEYCODE_BUTTON_X = 99,
AKEYCODE_BUTTON_Y = 100,
AKEYCODE_BUTTON_Z = 101,
AKEYCODE_BUTTON_L1 = 102,
AKEYCODE_BUTTON_R1 = 103,
AKEYCODE_BUTTON_L2 = 104,
AKEYCODE_BUTTON_R2 = 105,
AKEYCODE_BUTTON_THUMBL = 106,
AKEYCODE_BUTTON_THUMBR = 107,
AKEYCODE_BUTTON_START = 108,
AKEYCODE_BUTTON_SELECT = 109,
AKEYCODE_BUTTON_MODE = 110,
AKEYCODE_ESCAPE = 111,
AKEYCODE_FORWARD_DEL = 112,
AKEYCODE_CTRL_LEFT = 113,
AKEYCODE_CTRL_RIGHT = 114,
AKEYCODE_CAPS_LOCK = 115,
AKEYCODE_SCROLL_LOCK = 116,
AKEYCODE_META_LEFT = 117,
AKEYCODE_META_RIGHT = 118,
AKEYCODE_FUNCTION = 119,
AKEYCODE_SYSRQ = 120,
AKEYCODE_BREAK = 121,
AKEYCODE_MOVE_HOME = 122,
AKEYCODE_MOVE_END = 123,
AKEYCODE_INSERT = 124,
AKEYCODE_FORWARD = 125,
AKEYCODE_MEDIA_PLAY = 126,
AKEYCODE_MEDIA_PAUSE = 127,
AKEYCODE_MEDIA_CLOSE = 128,
AKEYCODE_MEDIA_EJECT = 129,
AKEYCODE_MEDIA_RECORD = 130,
AKEYCODE_F1 = 131,
AKEYCODE_F2 = 132,
AKEYCODE_F3 = 133,
AKEYCODE_F4 = 134,
AKEYCODE_F5 = 135,
AKEYCODE_F6 = 136,
AKEYCODE_F7 = 137,
AKEYCODE_F8 = 138,
AKEYCODE_F9 = 139,
AKEYCODE_F10 = 140,
AKEYCODE_F11 = 141,
AKEYCODE_F12 = 142,
AKEYCODE_NUM_LOCK = 143,
AKEYCODE_NUMPAD_0 = 144,
AKEYCODE_NUMPAD_1 = 145,
AKEYCODE_NUMPAD_2 = 146,
AKEYCODE_NUMPAD_3 = 147,
AKEYCODE_NUMPAD_4 = 148,
AKEYCODE_NUMPAD_5 = 149,
AKEYCODE_NUMPAD_6 = 150,
AKEYCODE_NUMPAD_7 = 151,
AKEYCODE_NUMPAD_8 = 152,
AKEYCODE_NUMPAD_9 = 153,
AKEYCODE_NUMPAD_DIVIDE = 154,
AKEYCODE_NUMPAD_MULTIPLY = 155,
AKEYCODE_NUMPAD_SUBTRACT = 156,
AKEYCODE_NUMPAD_ADD = 157,
AKEYCODE_NUMPAD_DOT = 158,
AKEYCODE_NUMPAD_COMMA = 159,
AKEYCODE_NUMPAD_ENTER = 160,
AKEYCODE_NUMPAD_EQUALS = 161,
AKEYCODE_NUMPAD_LEFT_PAREN = 162,
AKEYCODE_NUMPAD_RIGHT_PAREN = 163,
AKEYCODE_VOLUME_MUTE = 164,
AKEYCODE_INFO = 165,
AKEYCODE_CHANNEL_UP = 166,
AKEYCODE_CHANNEL_DOWN = 167,
AKEYCODE_ZOOM_IN = 168,
AKEYCODE_ZOOM_OUT = 169,
AKEYCODE_TV = 170,
AKEYCODE_WINDOW = 171,
AKEYCODE_GUIDE = 172,
AKEYCODE_DVR = 173,
AKEYCODE_BOOKMARK = 174,
AKEYCODE_CAPTIONS = 175,
AKEYCODE_SETTINGS = 176,
AKEYCODE_TV_POWER = 177,
AKEYCODE_TV_INPUT = 178,
AKEYCODE_STB_POWER = 179,
AKEYCODE_STB_INPUT = 180,
AKEYCODE_AVR_POWER = 181,
AKEYCODE_AVR_INPUT = 182,
AKEYCODE_PROG_RED = 183,
AKEYCODE_PROG_GREEN = 184,
AKEYCODE_PROG_YELLOW = 185,
AKEYCODE_PROG_BLUE = 186,
AKEYCODE_APP_SWITCH = 187,
// NOTE: If you add a new keycode here you must also add it to several other files.
// Refer to frameworks/base/core/java/android/view/KeyEvent.java for the full list.
};
#ifdef __cplusplus
}
#endif
#endif // _ANDROID_KEYCODES_H

View File

@@ -0,0 +1,303 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_NATIVE_ACTIVITY_H
#define ANDROID_NATIVE_ACTIVITY_H
#include <stdint.h>
#include <sys/types.h>
#include <jni.h>
#include <android/asset_manager.h>
#include <android/input.h>
#include <android/native_window.h>
#ifdef __cplusplus
extern "C" {
#endif
struct ANativeActivityCallbacks;
/**
* This structure defines the native side of an android.app.NativeActivity.
* It is created by the framework, and handed to the application's native
* code as it is being launched.
*/
typedef struct ANativeActivity {
/**
* Pointer to the callback function table of the native application.
* You can set the functions here to your own callbacks. The callbacks
* pointer itself here should not be changed; it is allocated and managed
* for you by the framework.
*/
struct ANativeActivityCallbacks* callbacks;
/**
* The global handle on the process's Java VM.
*/
JavaVM* vm;
/**
* JNI context for the main thread of the app. Note that this field
* can ONLY be used from the main thread of the process; that is, the
* thread that calls into the ANativeActivityCallbacks.
*/
JNIEnv* env;
/**
* The NativeActivity Java class.
*/
jobject clazz;
/**
* Path to this application's internal data directory.
*/
const char* internalDataPath;
/**
* Path to this application's external (removable/mountable) data directory.
*/
const char* externalDataPath;
/**
* The platform's SDK version code.
*/
int32_t sdkVersion;
/**
* This is the native instance of the application. It is not used by
* the framework, but can be set by the application to its own instance
* state.
*/
void* instance;
/**
* Pointer to the Asset Manager instance for the application. The application
* uses this to access binary assets bundled inside its own .apk file.
*/
AAssetManager* assetManager;
/**
* Available starting with Honeycomb: path to the directory containing
* the application's OBB files (if any). If the app doesn't have any
* OBB files, this directory may not exist.
*/
const char* obbPath;
} ANativeActivity;
/**
* These are the callbacks the framework makes into a native application.
* All of these callbacks happen on the main thread of the application.
* By default, all callbacks are NULL; set to a pointer to your own function
* to have it called.
*/
typedef struct ANativeActivityCallbacks {
/**
* NativeActivity has started. See Java documentation for Activity.onStart()
* for more information.
*/
void (*onStart)(ANativeActivity* activity);
/**
* NativeActivity has resumed. See Java documentation for Activity.onResume()
* for more information.
*/
void (*onResume)(ANativeActivity* activity);
/**
* Framework is asking NativeActivity to save its current instance state.
* See Java documentation for Activity.onSaveInstanceState() for more
* information. The returned pointer needs to be created with malloc();
* the framework will call free() on it for you. You also must fill in
* outSize with the number of bytes in the allocation. Note that the
* saved state will be persisted, so it can not contain any active
* entities (pointers to memory, file descriptors, etc).
*/
void* (*onSaveInstanceState)(ANativeActivity* activity, size_t* outSize);
/**
* NativeActivity has paused. See Java documentation for Activity.onPause()
* for more information.
*/
void (*onPause)(ANativeActivity* activity);
/**
* NativeActivity has stopped. See Java documentation for Activity.onStop()
* for more information.
*/
void (*onStop)(ANativeActivity* activity);
/**
* NativeActivity is being destroyed. See Java documentation for Activity.onDestroy()
* for more information.
*/
void (*onDestroy)(ANativeActivity* activity);
/**
* Focus has changed in this NativeActivity's window. This is often used,
* for example, to pause a game when it loses input focus.
*/
void (*onWindowFocusChanged)(ANativeActivity* activity, int hasFocus);
/**
* The drawing window for this native activity has been created. You
* can use the given native window object to start drawing.
*/
void (*onNativeWindowCreated)(ANativeActivity* activity, ANativeWindow* window);
/**
* The drawing window for this native activity has been resized. You should
* retrieve the new size from the window and ensure that your rendering in
* it now matches.
*/
void (*onNativeWindowResized)(ANativeActivity* activity, ANativeWindow* window);
/**
* The drawing window for this native activity needs to be redrawn. To avoid
* transient artifacts during screen changes (such resizing after rotation),
* applications should not return from this function until they have finished
* drawing their window in its current state.
*/
void (*onNativeWindowRedrawNeeded)(ANativeActivity* activity, ANativeWindow* window);
/**
* The drawing window for this native activity is going to be destroyed.
* You MUST ensure that you do not touch the window object after returning
* from this function: in the common case of drawing to the window from
* another thread, that means the implementation of this callback must
* properly synchronize with the other thread to stop its drawing before
* returning from here.
*/
void (*onNativeWindowDestroyed)(ANativeActivity* activity, ANativeWindow* window);
/**
* The input queue for this native activity's window has been created.
* You can use the given input queue to start retrieving input events.
*/
void (*onInputQueueCreated)(ANativeActivity* activity, AInputQueue* queue);
/**
* The input queue for this native activity's window is being destroyed.
* You should no longer try to reference this object upon returning from this
* function.
*/
void (*onInputQueueDestroyed)(ANativeActivity* activity, AInputQueue* queue);
/**
* The rectangle in the window in which content should be placed has changed.
*/
void (*onContentRectChanged)(ANativeActivity* activity, const ARect* rect);
/**
* The current device AConfiguration has changed. The new configuration can
* be retrieved from assetManager.
*/
void (*onConfigurationChanged)(ANativeActivity* activity);
/**
* The system is running low on memory. Use this callback to release
* resources you do not need, to help the system avoid killing more
* important processes.
*/
void (*onLowMemory)(ANativeActivity* activity);
} ANativeActivityCallbacks;
/**
* This is the function that must be in the native code to instantiate the
* application's native activity. It is called with the activity instance (see
* above); if the code is being instantiated from a previously saved instance,
* the savedState will be non-NULL and point to the saved data. You must make
* any copy of this data you need -- it will be released after you return from
* this function.
*/
typedef void ANativeActivity_createFunc(ANativeActivity* activity,
void* savedState, size_t savedStateSize);
/**
* The name of the function that NativeInstance looks for when launching its
* native code. This is the default function that is used, you can specify
* "android.app.func_name" string meta-data in your manifest to use a different
* function.
*/
extern ANativeActivity_createFunc ANativeActivity_onCreate;
/**
* Finish the given activity. Its finish() method will be called, causing it
* to be stopped and destroyed. Note that this method can be called from
* *any* thread; it will send a message to the main thread of the process
* where the Java finish call will take place.
*/
void ANativeActivity_finish(ANativeActivity* activity);
/**
* Change the window format of the given activity. Calls getWindow().setFormat()
* of the given activity. Note that this method can be called from
* *any* thread; it will send a message to the main thread of the process
* where the Java finish call will take place.
*/
void ANativeActivity_setWindowFormat(ANativeActivity* activity, int32_t format);
/**
* Change the window flags of the given activity. Calls getWindow().setFlags()
* of the given activity. Note that this method can be called from
* *any* thread; it will send a message to the main thread of the process
* where the Java finish call will take place. See window.h for flag constants.
*/
void ANativeActivity_setWindowFlags(ANativeActivity* activity,
uint32_t addFlags, uint32_t removeFlags);
/**
* Flags for ANativeActivity_showSoftInput; see the Java InputMethodManager
* API for documentation.
*/
enum {
ANATIVEACTIVITY_SHOW_SOFT_INPUT_IMPLICIT = 0x0001,
ANATIVEACTIVITY_SHOW_SOFT_INPUT_FORCED = 0x0002,
};
/**
* Show the IME while in the given activity. Calls InputMethodManager.showSoftInput()
* for the given activity. Note that this method can be called from
* *any* thread; it will send a message to the main thread of the process
* where the Java finish call will take place.
*/
void ANativeActivity_showSoftInput(ANativeActivity* activity, uint32_t flags);
/**
* Flags for ANativeActivity_hideSoftInput; see the Java InputMethodManager
* API for documentation.
*/
enum {
ANATIVEACTIVITY_HIDE_SOFT_INPUT_IMPLICIT_ONLY = 0x0001,
ANATIVEACTIVITY_HIDE_SOFT_INPUT_NOT_ALWAYS = 0x0002,
};
/**
* Hide the IME while in the given activity. Calls InputMethodManager.hideSoftInput()
* for the given activity. Note that this method can be called from
* *any* thread; it will send a message to the main thread of the process
* where the Java finish call will take place.
*/
void ANativeActivity_hideSoftInput(ANativeActivity* activity, uint32_t flags);
#ifdef __cplusplus
};
#endif
#endif // ANDROID_NATIVE_ACTIVITY_H