docs: Add AccelerometerPlay sample to prebuilts

Change-Id: I8e4146cd00df889e60aa9f03f9a79231b02dfdd5
This commit is contained in:
Trevor Johns
2016-08-28 01:09:54 -07:00
parent a374bcd44d
commit ef51b0db8e
12 changed files with 525 additions and 0 deletions

View File

@@ -0,0 +1,39 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0" package="com.example.android.accelerometerplay">
<application android:icon="@mipmap/ic_launcher" android:label="@string/app_name">
<activity android:name=".AccelerometerPlayActivity"
android:label="@string/app_name"
android:screenOrientation="portrait"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="5"></uses-sdk>
<uses-permission android:name="android.permission.VIBRATE"></uses-permission>
<uses-permission android:name="android.permission.WAKE_LOCK"></uses-permission>
</manifest>

View File

@@ -0,0 +1,15 @@
page.tags="AccelerometerPlay"
sample.group=Sensors
@jd:body
<p>
<p>This sample demonstrates how to use an accelerometer sensor as input for
a physics-based view. The input from the accelerometer is used to simulate a
virtual surface, and a number of free-moving objects placed on top of it.</p>
<p>Any effects from the device's acceleration vector (including both gravity and
temporary movement) will be translated to the on-screen particles.</p>
</p>

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

View File

@@ -0,0 +1,23 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@drawable/wood"
>
</FrameLayout>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

View File

@@ -0,0 +1,19 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<resources>
<string name="app_name">AccelerometerPlay</string>
</resources>

View File

@@ -0,0 +1,429 @@
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.example.android.accelerometerplay;
import android.annotation.TargetApi;
import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.BitmapFactory.Options;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Build;
import android.os.Bundle;
import android.os.PowerManager;
import android.os.PowerManager.WakeLock;
import android.util.AttributeSet;
import android.util.DisplayMetrics;
import android.view.Display;
import android.view.Surface;
import android.view.View;
import android.view.ViewGroup;
import android.view.WindowManager;
import android.widget.FrameLayout;
/**
* This is an example of using the accelerometer to integrate the device's
* acceleration to a position using the Verlet method. This is illustrated with
* a very simple particle system comprised of a few iron balls freely moving on
* an inclined wooden table. The inclination of the virtual table is controlled
* by the device's accelerometer.
*
* @see SensorManager
* @see SensorEvent
* @see Sensor
*/
public class AccelerometerPlayActivity extends Activity {
private SimulationView mSimulationView;
private SensorManager mSensorManager;
private PowerManager mPowerManager;
private WindowManager mWindowManager;
private Display mDisplay;
private WakeLock mWakeLock;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// Get an instance of the SensorManager
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
// Get an instance of the PowerManager
mPowerManager = (PowerManager) getSystemService(POWER_SERVICE);
// Get an instance of the WindowManager
mWindowManager = (WindowManager) getSystemService(WINDOW_SERVICE);
mDisplay = mWindowManager.getDefaultDisplay();
// Create a bright wake lock
mWakeLock = mPowerManager.newWakeLock(PowerManager.SCREEN_BRIGHT_WAKE_LOCK, getClass()
.getName());
// instantiate our simulation view and set it as the activity's content
mSimulationView = new SimulationView(this);
mSimulationView.setBackgroundResource(R.drawable.wood);
setContentView(mSimulationView);
}
@Override
protected void onResume() {
super.onResume();
/*
* when the activity is resumed, we acquire a wake-lock so that the
* screen stays on, since the user will likely not be fiddling with the
* screen or buttons.
*/
mWakeLock.acquire();
// Start the simulation
mSimulationView.startSimulation();
}
@Override
protected void onPause() {
super.onPause();
/*
* When the activity is paused, we make sure to stop the simulation,
* release our sensor resources and wake locks
*/
// Stop the simulation
mSimulationView.stopSimulation();
// and release our wake-lock
mWakeLock.release();
}
class SimulationView extends FrameLayout implements SensorEventListener {
// diameter of the balls in meters
private static final float sBallDiameter = 0.004f;
private static final float sBallDiameter2 = sBallDiameter * sBallDiameter;
private final int mDstWidth;
private final int mDstHeight;
private Sensor mAccelerometer;
private long mLastT;
private float mXDpi;
private float mYDpi;
private float mMetersToPixelsX;
private float mMetersToPixelsY;
private float mXOrigin;
private float mYOrigin;
private float mSensorX;
private float mSensorY;
private float mHorizontalBound;
private float mVerticalBound;
private final ParticleSystem mParticleSystem;
/*
* Each of our particle holds its previous and current position, its
* acceleration. for added realism each particle has its own friction
* coefficient.
*/
class Particle extends View {
private float mPosX = (float) Math.random();
private float mPosY = (float) Math.random();
private float mVelX;
private float mVelY;
public Particle(Context context) {
super(context);
}
public Particle(Context context, AttributeSet attrs) {
super(context, attrs);
}
public Particle(Context context, AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
}
@TargetApi(Build.VERSION_CODES.LOLLIPOP)
public Particle(Context context, AttributeSet attrs, int defStyleAttr,
int defStyleRes) {
super(context, attrs, defStyleAttr, defStyleRes);
}
public void computePhysics(float sx, float sy, float dT) {
final float ax = -sx/5;
final float ay = -sy/5;
mPosX += mVelX * dT + ax * dT * dT / 2;
mPosY += mVelY * dT + ay * dT * dT / 2;
mVelX += ax * dT;
mVelY += ay * dT;
}
/*
* Resolving constraints and collisions with the Verlet integrator
* can be very simple, we simply need to move a colliding or
* constrained particle in such way that the constraint is
* satisfied.
*/
public void resolveCollisionWithBounds() {
final float xmax = mHorizontalBound;
final float ymax = mVerticalBound;
final float x = mPosX;
final float y = mPosY;
if (x > xmax) {
mPosX = xmax;
mVelX = 0;
} else if (x < -xmax) {
mPosX = -xmax;
mVelX = 0;
}
if (y > ymax) {
mPosY = ymax;
mVelY = 0;
} else if (y < -ymax) {
mPosY = -ymax;
mVelY = 0;
}
}
}
/*
* A particle system is just a collection of particles
*/
class ParticleSystem {
static final int NUM_PARTICLES = 5;
private Particle mBalls[] = new Particle[NUM_PARTICLES];
ParticleSystem() {
/*
* Initially our particles have no speed or acceleration
*/
for (int i = 0; i < mBalls.length; i++) {
mBalls[i] = new Particle(getContext());
mBalls[i].setBackgroundResource(R.drawable.ball);
mBalls[i].setLayerType(LAYER_TYPE_HARDWARE, null);
addView(mBalls[i], new ViewGroup.LayoutParams(mDstWidth, mDstHeight));
}
}
/*
* Update the position of each particle in the system using the
* Verlet integrator.
*/
private void updatePositions(float sx, float sy, long timestamp) {
final long t = timestamp;
if (mLastT != 0) {
final float dT = (float) (t - mLastT) / 1000.f /** (1.0f / 1000000000.0f)*/;
final int count = mBalls.length;
for (int i = 0; i < count; i++) {
Particle ball = mBalls[i];
ball.computePhysics(sx, sy, dT);
}
}
mLastT = t;
}
/*
* Performs one iteration of the simulation. First updating the
* position of all the particles and resolving the constraints and
* collisions.
*/
public void update(float sx, float sy, long now) {
// update the system's positions
updatePositions(sx, sy, now);
// We do no more than a limited number of iterations
final int NUM_MAX_ITERATIONS = 10;
/*
* Resolve collisions, each particle is tested against every
* other particle for collision. If a collision is detected the
* particle is moved away using a virtual spring of infinite
* stiffness.
*/
boolean more = true;
final int count = mBalls.length;
for (int k = 0; k < NUM_MAX_ITERATIONS && more; k++) {
more = false;
for (int i = 0; i < count; i++) {
Particle curr = mBalls[i];
for (int j = i + 1; j < count; j++) {
Particle ball = mBalls[j];
float dx = ball.mPosX - curr.mPosX;
float dy = ball.mPosY - curr.mPosY;
float dd = dx * dx + dy * dy;
// Check for collisions
if (dd <= sBallDiameter2) {
/*
* add a little bit of entropy, after nothing is
* perfect in the universe.
*/
dx += ((float) Math.random() - 0.5f) * 0.0001f;
dy += ((float) Math.random() - 0.5f) * 0.0001f;
dd = dx * dx + dy * dy;
// simulate the spring
final float d = (float) Math.sqrt(dd);
final float c = (0.5f * (sBallDiameter - d)) / d;
final float effectX = dx * c;
final float effectY = dy * c;
curr.mPosX -= effectX;
curr.mPosY -= effectY;
ball.mPosX += effectX;
ball.mPosY += effectY;
more = true;
}
}
curr.resolveCollisionWithBounds();
}
}
}
public int getParticleCount() {
return mBalls.length;
}
public float getPosX(int i) {
return mBalls[i].mPosX;
}
public float getPosY(int i) {
return mBalls[i].mPosY;
}
}
public void startSimulation() {
/*
* It is not necessary to get accelerometer events at a very high
* rate, by using a slower rate (SENSOR_DELAY_UI), we get an
* automatic low-pass filter, which "extracts" the gravity component
* of the acceleration. As an added benefit, we use less power and
* CPU resources.
*/
mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_GAME);
}
public void stopSimulation() {
mSensorManager.unregisterListener(this);
}
public SimulationView(Context context) {
super(context);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
DisplayMetrics metrics = new DisplayMetrics();
getWindowManager().getDefaultDisplay().getMetrics(metrics);
mXDpi = metrics.xdpi;
mYDpi = metrics.ydpi;
mMetersToPixelsX = mXDpi / 0.0254f;
mMetersToPixelsY = mYDpi / 0.0254f;
// rescale the ball so it's about 0.5 cm on screen
mDstWidth = (int) (sBallDiameter * mMetersToPixelsX + 0.5f);
mDstHeight = (int) (sBallDiameter * mMetersToPixelsY + 0.5f);
mParticleSystem = new ParticleSystem();
Options opts = new Options();
opts.inDither = true;
opts.inPreferredConfig = Bitmap.Config.RGB_565;
}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
// compute the origin of the screen relative to the origin of
// the bitmap
mXOrigin = (w - mDstWidth) * 0.5f;
mYOrigin = (h - mDstHeight) * 0.5f;
mHorizontalBound = ((w / mMetersToPixelsX - sBallDiameter) * 0.5f);
mVerticalBound = ((h / mMetersToPixelsY - sBallDiameter) * 0.5f);
}
@Override
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() != Sensor.TYPE_ACCELEROMETER)
return;
/*
* record the accelerometer data, the event's timestamp as well as
* the current time. The latter is needed so we can calculate the
* "present" time during rendering. In this application, we need to
* take into account how the screen is rotated with respect to the
* sensors (which always return data in a coordinate space aligned
* to with the screen in its native orientation).
*/
switch (mDisplay.getRotation()) {
case Surface.ROTATION_0:
mSensorX = event.values[0];
mSensorY = event.values[1];
break;
case Surface.ROTATION_90:
mSensorX = -event.values[1];
mSensorY = event.values[0];
break;
case Surface.ROTATION_180:
mSensorX = -event.values[0];
mSensorY = -event.values[1];
break;
case Surface.ROTATION_270:
mSensorX = event.values[1];
mSensorY = -event.values[0];
break;
}
}
@Override
protected void onDraw(Canvas canvas) {
/*
* Compute the new position of our object, based on accelerometer
* data and present time.
*/
final ParticleSystem particleSystem = mParticleSystem;
final long now = System.currentTimeMillis();
final float sx = mSensorX;
final float sy = mSensorY;
particleSystem.update(sx, sy, now);
final float xc = mXOrigin;
final float yc = mYOrigin;
final float xs = mMetersToPixelsX;
final float ys = mMetersToPixelsY;
final int count = particleSystem.getParticleCount();
for (int i = 0; i < count; i++) {
/*
* We transform the canvas so that the coordinate system matches
* the sensors coordinate system with the origin in the center
* of the screen and the unit is the meter.
*/
final float x = xc + particleSystem.getPosX(i) * xs;
final float y = yc - particleSystem.getPosY(i) * ys;
particleSystem.mBalls[i].setTranslationX(x);
particleSystem.mBalls[i].setTranslationY(y);
}
// and make sure to redraw asap
invalidate();
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
}
}