#include #include #include #include #include #include #include #include #include #include /* * the qemud program is only used within the Android emulator as a bridge * between the emulator program and the emulated system. it really works as * a simple stream multiplexer that works as follows: * * - qemud communicates with the emulator program through a single serial * port, whose name is passed through a kernel boot parameter * (e.g. android.qemud=ttyS1) * * - qemud setups one or more unix local stream sockets in the * emulated system each one of these represent a different communication * 'channel' between the emulator program and the emulated system. * * as an example, one channel is used for the emulated GSM modem * (AT command channel), another channel is used for the emulated GPS, * etc... * * - the protocol used on the serial connection is pretty simple: * * offset size description * 0 4 4-char hex string giving the payload size * 4 2 2-char hex string giving the destination or * source channel * 6 n the message payload * * for emulator->system messages, the 'channel' index indicates * to which channel the payload must be sent * * for system->emulator messages, the 'channel' index indicates from * which channel the payload comes from. * * - a special channel index (0) is used to communicate with the qemud * program directly from the emulator. this is used for the following * commands: (content of the payload): * * request: connect: * answer: ok:connect::XX // succesful name lookup * answer: ko:connect:bad name // failed lookup * * the emulator queries the index of a given channel given * its human-readable name. the answer contains a 2-char hex * string for the channel index. * * not all emulated systems may need the same communication * channels, so this function may fail. * * any invalid request will get an answer of: * * ko:unknown command * * * here's a diagram of how things work: * * * _________ * _____________ creates | | * ________ | |==========>| Channel |--*-- * | |---->| Multiplexer | |_________| * --*--| Serial | |_____________| || creates * |________| | _____v___ * A +--------------->| | * | | Client |--*-- * +---------------------------------|_________| * * which really means that: * * - the multiplexer creates one Channel object per control socket qemud * handles (e.g. /dev/socket/qemud_gsm, /dev/socket/qemud_gps) * * - each Channel object has a numerical index that is >= 1, and waits * for client connection. it will create a Client object when this * happens * * - the Serial object receives packets from the serial port and sends them * to the multiplexer * * - the multiplexer tries to find a channel the packet is addressed to, * and will send the packet to all clients that correspond to it * * - when a Client receives data, it sends it directly to the Serial object * * - there are two kinds of Channel objects: * * CHANNEL_BROADCAST :: used for emulator -> clients broadcasts only * * CHANNEL_DUPLEX :: used for bidirectional communication with the * emulator, with only *one* client allowed per * duplex channel */ #define DEBUG 0 #if DEBUG # define LOG_TAG "qemud" # include # define D(...) LOGD(__VA_ARGS__) #else # define D(...) ((void)0) #endif /** UTILITIES **/ static void fatal( const char* fmt, ... ) { va_list args; va_start(args, fmt); fprintf(stderr, "PANIC: "); vfprintf(stderr, fmt, args); fprintf(stderr, "\n" ); va_end(args); exit(1); } static void* xalloc( size_t sz ) { void* p; if (sz == 0) return NULL; p = malloc(sz); if (p == NULL) fatal( "not enough memory" ); return p; } #define xnew(p) (p) = xalloc(sizeof(*(p))) static void* xalloc0( size_t sz ) { void* p = xalloc(sz); memset( p, 0, sz ); return p; } #define xnew0(p) (p) = xalloc0(sizeof(*(p))) #define xfree(p) (free((p)), (p) = NULL) static void* xrealloc( void* block, size_t size ) { void* p = realloc( block, size ); if (p == NULL && size > 0) fatal( "not enough memory" ); return p; } #define xrenew(p,count) (p) = xrealloc((p),sizeof(*(p))*(count)) static int hex2int( const uint8_t* data, int len ) { int result = 0; while (len > 0) { int c = *data++; unsigned d; result <<= 4; do { d = (unsigned)(c - '0'); if (d < 10) break; d = (unsigned)(c - 'a'); if (d < 6) { d += 10; break; } d = (unsigned)(c - 'A'); if (d < 6) { d += 10; break; } return -1; } while (0); result |= d; len -= 1; } return result; } static void int2hex( int value, uint8_t* to, int width ) { int nn = 0; static const char hexchars[16] = "0123456789abcdef"; for ( --width; width >= 0; width--, nn++ ) { to[nn] = hexchars[(value >> (width*4)) & 15]; } } static int fd_read(int fd, void* to, int len) { int ret; do { ret = read(fd, to, len); } while (ret < 0 && errno == EINTR); return ret; } static int fd_write(int fd, const void* from, int len) { int ret; do { ret = write(fd, from, len); } while (ret < 0 && errno == EINTR); return ret; } static void fd_setnonblock(int fd) { int ret, flags; do { flags = fcntl(fd, F_GETFD); } while (flags < 0 && errno == EINTR); if (flags < 0) { fatal( "%s: could not get flags for fd %d: %s", __FUNCTION__, fd, strerror(errno) ); } do { ret = fcntl(fd, F_SETFD, flags | O_NONBLOCK); } while (ret < 0 && errno == EINTR); if (ret < 0) { fatal( "%s: could not set fd %d to non-blocking: %s", __FUNCTION__, fd, strerror(errno) ); } } /** FD EVENT LOOP **/ #include #define MAX_CHANNELS 16 #define MAX_EVENTS (MAX_CHANNELS+1) /* each channel + the serial fd */ typedef void (*EventFunc)( void* user, int events ); enum { HOOK_PENDING = (1 << 0), HOOK_CLOSING = (1 << 1), }; typedef struct { int fd; int wanted; int events; int state; void* ev_user; EventFunc ev_func; } LoopHook; typedef struct { int epoll_fd; int num_fds; int max_fds; struct epoll_event* events; LoopHook* hooks; } Looper; static void looper_init( Looper* l ) { l->epoll_fd = epoll_create(4); l->num_fds = 0; l->max_fds = 0; l->events = NULL; l->hooks = NULL; } static void looper_done( Looper* l ) { xfree(l->events); xfree(l->hooks); l->max_fds = 0; l->num_fds = 0; close(l->epoll_fd); l->epoll_fd = -1; } static LoopHook* looper_find( Looper* l, int fd ) { LoopHook* hook = l->hooks; LoopHook* end = hook + l->num_fds; for ( ; hook < end; hook++ ) { if (hook->fd == fd) return hook; } return NULL; } static void looper_grow( Looper* l ) { int old_max = l->max_fds; int new_max = old_max + (old_max >> 1) + 4; int n; xrenew( l->events, new_max ); xrenew( l->hooks, new_max ); l->max_fds = new_max; /* now change the handles to all events */ for (n = 0; n < l->num_fds; n++) { struct epoll_event ev; LoopHook* hook = l->hooks + n; ev.events = hook->wanted; ev.data.ptr = hook; epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, hook->fd, &ev ); } } static void looper_add( Looper* l, int fd, EventFunc func, void* user ) { struct epoll_event ev; LoopHook* hook; if (l->num_fds >= l->max_fds) looper_grow(l); hook = l->hooks + l->num_fds; hook->fd = fd; hook->ev_user = user; hook->ev_func = func; hook->state = 0; hook->wanted = 0; hook->events = 0; fd_setnonblock(fd); ev.events = 0; ev.data.ptr = hook; epoll_ctl( l->epoll_fd, EPOLL_CTL_ADD, fd, &ev ); l->num_fds += 1; } static void looper_del( Looper* l, int fd ) { LoopHook* hook = looper_find( l, fd ); if (!hook) { D( "%s: invalid fd: %d", __FUNCTION__, fd ); return; } /* don't remove the hook yet */ hook->state |= HOOK_CLOSING; epoll_ctl( l->epoll_fd, EPOLL_CTL_DEL, fd, NULL ); } static void looper_enable( Looper* l, int fd, int events ) { LoopHook* hook = looper_find( l, fd ); if (!hook) { D("%s: invalid fd: %d", __FUNCTION__, fd ); return; } if (events & ~hook->wanted) { struct epoll_event ev; hook->wanted |= events; ev.events = hook->wanted; ev.data.ptr = hook; epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, fd, &ev ); } } static void looper_disable( Looper* l, int fd, int events ) { LoopHook* hook = looper_find( l, fd ); if (!hook) { D("%s: invalid fd: %d", __FUNCTION__, fd ); return; } if (events & hook->wanted) { struct epoll_event ev; hook->wanted &= ~events; ev.events = hook->wanted; ev.data.ptr = hook; epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, fd, &ev ); } } static void looper_loop( Looper* l ) { for (;;) { int n, count; do { count = epoll_wait( l->epoll_fd, l->events, l->num_fds, -1 ); } while (count < 0 && errno == EINTR); if (count < 0) { D("%s: error: %s", __FUNCTION__, strerror(errno) ); return; } /* mark all pending hooks */ for (n = 0; n < count; n++) { LoopHook* hook = l->events[n].data.ptr; hook->state = HOOK_PENDING; hook->events = l->events[n].events; } /* execute hook callbacks. this may change the 'hooks' * and 'events' array, as well as l->num_fds, so be careful */ for (n = 0; n < l->num_fds; n++) { LoopHook* hook = l->hooks + n; if (hook->state & HOOK_PENDING) { hook->state &= ~HOOK_PENDING; hook->ev_func( hook->ev_user, hook->events ); } } /* now remove all the hooks that were closed by * the callbacks */ for (n = 0; n < l->num_fds;) { LoopHook* hook = l->hooks + n; if (!(hook->state & HOOK_CLOSING)) { n++; continue; } hook[0] = l->hooks[l->num_fds-1]; l->num_fds -= 1; } } } /** PACKETS **/ typedef struct Packet Packet; /* we want to ensure that Packet is no more than a single page */ #define MAX_PAYLOAD (4096-16-6) struct Packet { Packet* next; int len; int channel; uint8_t data[ MAX_PAYLOAD ]; }; static Packet* _free_packets; static Packet* packet_alloc(void) { Packet* p = _free_packets; if (p != NULL) { _free_packets = p->next; } else { xnew(p); } p->next = NULL; p->len = 0; p->channel = -1; return p; } static void packet_free( Packet* *ppacket ) { Packet* p = *ppacket; if (p) { p->next = _free_packets; _free_packets = p; *ppacket = NULL; } } static Packet* packet_dup( Packet* p ) { Packet* p2 = packet_alloc(); p2->len = p->len; p2->channel = p->channel; memcpy(p2->data, p->data, p->len); return p2; } /** PACKET RECEIVER **/ typedef void (*PostFunc) ( void* user, Packet* p ); typedef void (*CloseFunc)( void* user ); typedef struct { PostFunc post; CloseFunc close; void* user; } Receiver; static __inline__ void receiver_post( Receiver* r, Packet* p ) { r->post( r->user, p ); } static __inline__ void receiver_close( Receiver* r ) { r->close( r->user ); } /** FD HANDLERS ** ** these are smart listeners that send incoming packets to a receiver ** and can queue one or more outgoing packets and send them when possible **/ typedef struct FDHandler { int fd; Looper* looper; Receiver receiver[1]; int out_pos; Packet* out_first; Packet** out_ptail; } FDHandler; static void fdhandler_done( FDHandler* f ) { /* get rid of unsent packets */ if (f->out_first) { Packet* p; while ((p = f->out_first) != NULL) { f->out_first = p->next; packet_free(&p); } } /* get rid of file descriptor */ if (f->fd >= 0) { looper_del( f->looper, f->fd ); close(f->fd); f->fd = -1; } f->looper = NULL; } static void fdhandler_enqueue( FDHandler* f, Packet* p ) { Packet* first = f->out_first; p->next = NULL; f->out_ptail[0] = p; f->out_ptail = &p->next; if (first == NULL) { f->out_pos = 0; looper_enable( f->looper, f->fd, EPOLLOUT ); } } static void fdhandler_event( FDHandler* f, int events ) { int len; if (events & EPOLLIN) { Packet* p = packet_alloc(); int len; if ((len = fd_read(f->fd, p->data, MAX_PAYLOAD)) < 0) { D("%s: can't recv: %s", __FUNCTION__, strerror(errno)); packet_free(&p); } else { p->len = len; p->channel = -101; /* special debug value */ receiver_post( f->receiver, p ); } } /* in certain cases, it's possible to have both EPOLLIN and * EPOLLHUP at the same time. This indicates that there is incoming * data to read, but that the connection was nonetheless closed * by the sender. Be sure to read the data before closing * the receiver to avoid packet loss. */ if (events & (EPOLLHUP|EPOLLERR)) { /* disconnection */ D("%s: disconnect on fd %d", __FUNCTION__, f->fd); receiver_close( f->receiver ); return; } if (events & EPOLLOUT && f->out_first) { Packet* p = f->out_first; int avail, len; avail = p->len - f->out_pos; if ((len = fd_write(f->fd, p->data + f->out_pos, avail)) < 0) { D("%s: can't send: %s", __FUNCTION__, strerror(errno)); } else { f->out_pos += len; if (f->out_pos >= p->len) { f->out_pos = 0; f->out_first = p->next; packet_free(&p); if (f->out_first == NULL) { f->out_ptail = &f->out_first; looper_disable( f->looper, f->fd, EPOLLOUT ); } } } } } static void fdhandler_init( FDHandler* f, int fd, Looper* looper, Receiver* receiver ) { f->fd = fd; f->looper = looper; f->receiver[0] = receiver[0]; f->out_first = NULL; f->out_ptail = &f->out_first; f->out_pos = 0; looper_add( looper, fd, (EventFunc) fdhandler_event, f ); looper_enable( looper, fd, EPOLLIN ); } static void fdhandler_accept_event( FDHandler* f, int events ) { if (events & EPOLLIN) { /* this is an accept - send a dummy packet to the receiver */ Packet* p = packet_alloc(); D("%s: accepting on fd %d", __FUNCTION__, f->fd); p->data[0] = 1; p->len = 1; receiver_post( f->receiver, p ); } if (events & (EPOLLHUP|EPOLLERR)) { /* disconnecting !! */ D("%s: closing fd %d", __FUNCTION__, f->fd); receiver_close( f->receiver ); return; } } static void fdhandler_init_accept( FDHandler* f, int fd, Looper* looper, Receiver* receiver ) { f->fd = fd; f->looper = looper; f->receiver[0] = receiver[0]; looper_add( looper, fd, (EventFunc) fdhandler_accept_event, f ); looper_enable( looper, fd, EPOLLIN ); } /** CLIENTS **/ typedef struct Client { struct Client* next; struct Client** pref; int channel; FDHandler fdhandler[1]; Receiver receiver[1]; } Client; static Client* _free_clients; static void client_free( Client* c ) { c->pref[0] = c->next; c->next = NULL; c->pref = &c->next; fdhandler_done( c->fdhandler ); free(c); } static void client_receive( Client* c, Packet* p ) { p->channel = c->channel; receiver_post( c->receiver, p ); } static void client_send( Client* c, Packet* p ) { fdhandler_enqueue( c->fdhandler, p ); } static void client_close( Client* c ) { D("disconnecting client on fd %d", c->fdhandler->fd); client_free(c); } static Client* client_new( int fd, int channel, Looper* looper, Receiver* receiver ) { Client* c; Receiver recv; xnew(c); c->next = NULL; c->pref = &c->next; c->channel = channel; c->receiver[0] = receiver[0]; recv.user = c; recv.post = (PostFunc) client_receive; recv.close = (CloseFunc) client_close; fdhandler_init( c->fdhandler, fd, looper, &recv ); return c; } static void client_link( Client* c, Client** plist ) { c->next = plist[0]; c->pref = plist; plist[0] = c; } /** CHANNELS **/ typedef enum { CHANNEL_BROADCAST = 0, CHANNEL_DUPLEX, CHANNEL_MAX /* do not remove */ } ChannelType; #define CHANNEL_CONTROL 0 typedef struct Channel { struct Channel* next; struct Channel** pref; FDHandler fdhandler[1]; ChannelType ctype; const char* name; int index; Receiver receiver[1]; Client* clients; } Channel; static void channel_free( Channel* c ) { while (c->clients) client_free(c->clients); c->pref[0] = c->next; c->pref = &c->next; c->next = NULL; fdhandler_done( c->fdhandler ); free(c); } static void channel_close( Channel* c ) { D("closing channel '%s' on fd %d", c->name, c->fdhandler->fd); channel_free(c); } static void channel_accept( Channel* c, Packet* p ) { int fd; struct sockaddr from; socklen_t fromlen = sizeof(from); /* get rid of dummy packet (see fdhandler_event_accept) */ packet_free(&p); do { fd = accept( c->fdhandler->fd, &from, &fromlen ); } while (fd < 0 && errno == EINTR); if (fd >= 0) { Client* client; /* DUPLEX channels can only have one client at a time */ if (c->ctype == CHANNEL_DUPLEX && c->clients != NULL) { D("refusing client connection on duplex channel '%s'", c->name); close(fd); return; } client = client_new( fd, c->index, c->fdhandler->looper, c->receiver ); client_link( client, &c->clients ); D("new client for channel '%s' on fd %d", c->name, fd); } else D("could not accept connection: %s", strerror(errno)); } static Channel* channel_new( int fd, ChannelType ctype, const char* name, int index, Looper* looper, Receiver* receiver ) { Channel* c; Receiver recv; xnew(c); c->next = NULL; c->pref = &c->next; c->ctype = ctype; c->name = name; c->index = index; /* saved for future clients */ c->receiver[0] = receiver[0]; recv.user = c; recv.post = (PostFunc) channel_accept; recv.close = (CloseFunc) channel_close; fdhandler_init_accept( c->fdhandler, fd, looper, &recv ); listen( fd, 5 ); return c; } static void channel_link( Channel* c, Channel** plist ) { c->next = plist[0]; c->pref = plist; plist[0] = c; } static void channel_send( Channel* c, Packet* p ) { Client* client = c->clients; for ( ; client; client = client->next ) { Packet* q = packet_dup(p); client_send( client, q ); } packet_free( &p ); } /* each packet is made of a 6 byte header followed by a payload * the header looks like: * * offset size description * 0 4 a 4-char hex string for the size of the payload * 4 2 a 2-byte hex string for the channel number * 6 n the payload itself */ #define HEADER_SIZE 6 #define LENGTH_OFFSET 0 #define LENGTH_SIZE 4 #define CHANNEL_OFFSET 4 #define CHANNEL_SIZE 2 #define CHANNEL_INDEX_NONE 0 #define CHANNEL_INDEX_CONTROL 1 #define TOSTRING(x) _TOSTRING(x) #define _TOSTRING(x) #x /** SERIAL HANDLER **/ typedef struct Serial { FDHandler fdhandler[1]; Receiver receiver[1]; int in_len; int in_datalen; int in_channel; Packet* in_packet; } Serial; static void serial_done( Serial* s ) { packet_free(&s->in_packet); s->in_len = 0; s->in_datalen = 0; s->in_channel = 0; fdhandler_done(s->fdhandler); } static void serial_close( Serial* s ) { fatal("unexpected serial port close !!"); } /* receive packets from the serial port */ static void serial_receive( Serial* s, Packet* p ) { int rpos = 0, rcount = p->len; Packet* inp = s->in_packet; int inpos = s->in_len; //D("received from serial: %d bytes: '%.*s'", p->len, p->len, p->data); while (rpos < rcount) { int avail = rcount - rpos; /* first, try to read the header */ if (s->in_datalen == 0) { int wanted = HEADER_SIZE - inpos; if (avail > wanted) avail = wanted; memcpy( inp->data + inpos, p->data + rpos, avail ); inpos += avail; rpos += avail; if (inpos == HEADER_SIZE) { s->in_datalen = hex2int( inp->data + LENGTH_OFFSET, LENGTH_SIZE ); s->in_channel = hex2int( inp->data + CHANNEL_OFFSET, CHANNEL_SIZE ); if (s->in_datalen <= 0) D("ignoring empty packet from serial port"); //D("received %d bytes packet for channel %d", s->in_datalen, s->in_channel); inpos = 0; } } else /* then, populate the packet itself */ { int wanted = s->in_datalen - inpos; if (avail > wanted) avail = wanted; memcpy( inp->data + inpos, p->data + rpos, avail ); inpos += avail; rpos += avail; if (inpos == s->in_datalen) { if (s->in_channel < 0) { D("ignoring %d bytes addressed to channel %d", inpos, s->in_channel); } else { inp->len = inpos; inp->channel = s->in_channel; receiver_post( s->receiver, inp ); s->in_packet = inp = packet_alloc(); } s->in_datalen = 0; inpos = 0; } } } s->in_len = inpos; packet_free(&p); } /* send a packet to the serial port */ static void serial_send( Serial* s, Packet* p ) { Packet* h = packet_alloc(); //D("sending to serial %d bytes from channel %d: '%.*s'", p->len, p->channel, p->len, p->data); /* insert a small header before this packet */ h->len = HEADER_SIZE; int2hex( p->len, h->data + LENGTH_OFFSET, LENGTH_SIZE ); int2hex( p->channel, h->data + CHANNEL_OFFSET, CHANNEL_SIZE ); fdhandler_enqueue( s->fdhandler, h ); fdhandler_enqueue( s->fdhandler, p ); } static void serial_init( Serial* s, int fd, Looper* looper, Receiver* receiver ) { Receiver recv; recv.user = s; recv.post = (PostFunc) serial_receive; recv.close = (CloseFunc) serial_close; s->receiver[0] = receiver[0]; fdhandler_init( s->fdhandler, fd, looper, &recv ); s->in_len = 0; s->in_datalen = 0; s->in_channel = 0; s->in_packet = packet_alloc(); } /** GLOBAL MULTIPLEXER **/ typedef struct { Looper looper[1]; Serial serial[1]; Channel* channels; uint16_t channel_last; } Multiplexer; /* receive a packet from the serial port, send it to the relevant client/channel */ static void multiplexer_receive_serial( Multiplexer* m, Packet* p ); static void multiplexer_init( Multiplexer* m, const char* serial_dev ) { int fd; Receiver recv; looper_init( m->looper ); fd = open(serial_dev, O_RDWR); if (fd < 0) { fatal( "%s: could not open '%s': %s", __FUNCTION__, serial_dev, strerror(errno) ); } // disable echo on serial lines if ( !memcmp( serial_dev, "/dev/ttyS", 9 ) ) { struct termios ios; tcgetattr( fd, &ios ); ios.c_lflag = 0; /* disable ECHO, ICANON, etc... */ tcsetattr( fd, TCSANOW, &ios ); } recv.user = m; recv.post = (PostFunc) multiplexer_receive_serial; recv.close = NULL; serial_init( m->serial, fd, m->looper, &recv ); m->channels = NULL; m->channel_last = CHANNEL_CONTROL+1; } static void multiplexer_add_channel( Multiplexer* m, int fd, const char* name, ChannelType ctype ) { Channel* c; Receiver recv; /* send channel client data directly to the serial port */ recv.user = m->serial; recv.post = (PostFunc) serial_send; recv.close = (CloseFunc) client_close; /* connect each channel directly to the serial port */ c = channel_new( fd, ctype, name, m->channel_last, m->looper, &recv ); channel_link( c, &m->channels ); m->channel_last += 1; if (m->channel_last <= CHANNEL_CONTROL) m->channel_last += 1; } static void multiplexer_done( Multiplexer* m ) { while (m->channels) channel_close(m->channels); serial_done( m->serial ); looper_done( m->looper ); } static void multiplexer_send_answer( Multiplexer* m, Packet* p, const char* answer ) { p->len = strlen( answer ); if (p->len >= MAX_PAYLOAD) p->len = MAX_PAYLOAD-1; memcpy( (char*)p->data, answer, p->len ); p->channel = CHANNEL_CONTROL; serial_send( m->serial, p ); } static void multiplexer_handle_connect( Multiplexer* m, Packet* p, char* name ) { int n; Channel* c; if (p->len >= MAX_PAYLOAD) { multiplexer_send_answer( m, p, "ko:connect:bad name" ); return; } p->data[p->len] = 0; for (c = m->channels; c != NULL; c = c->next) if ( !strcmp(c->name, name) ) break; if (c == NULL) { D("can't connect to unknown channel '%s'", name); multiplexer_send_answer( m, p, "ko:connect:bad name" ); return; } p->channel = CHANNEL_CONTROL; p->len = snprintf( (char*)p->data, MAX_PAYLOAD, "ok:connect:%s:%02x", c->name, c->index ); serial_send( m->serial, p ); } static void multiplexer_receive_serial( Multiplexer* m, Packet* p ) { Channel* c = m->channels; /* check the destination channel index */ if (p->channel != CHANNEL_CONTROL) { Channel* c; for (c = m->channels; c; c = c->next ) { if (c->index == p->channel) { channel_send( c, p ); break; } } if (c == NULL) { D("ignoring %d bytes packet for unknown channel index %d", p->len, p->channel ); packet_free(&p); } } else /* packet addressed to the control channel */ { D("received control message: '%.*s'", p->len, p->data); if (p->len > 8 && strncmp( (char*)p->data, "connect:", 8) == 0) { multiplexer_handle_connect( m, p, (char*)p->data + 8 ); } else { /* unknown command */ multiplexer_send_answer( m, p, "ko:unknown command" ); } return; } } /** MAIN LOOP **/ static Multiplexer _multiplexer[1]; #define QEMUD_PREFIX "qemud_" static const struct { const char* name; ChannelType ctype; } default_channels[] = { { "gsm", CHANNEL_DUPLEX }, /* GSM AT command channel, used by commands/rild/rild.c */ { "gps", CHANNEL_BROADCAST }, /* GPS NMEA commands, used by libs/hardware/qemu_gps.c */ { "control", CHANNEL_DUPLEX }, /* Used for power/leds/vibrator/etc... */ { NULL, 0 } }; int main( void ) { Multiplexer* m = _multiplexer; /* extract the name of our serial device from the kernel * boot options that are stored in /proc/cmdline */ #define KERNEL_OPTION "android.qemud=" { char buff[1024]; int fd, len; char* p; char* q; fd = open( "/proc/cmdline", O_RDONLY ); if (fd < 0) { D("%s: can't open /proc/cmdline !!: %s", __FUNCTION__, strerror(errno)); exit(1); } len = fd_read( fd, buff, sizeof(buff)-1 ); close(fd); if (len < 0) { D("%s: can't read /proc/cmdline: %s", __FUNCTION__, strerror(errno)); exit(1); } buff[len] = 0; p = strstr( buff, KERNEL_OPTION ); if (p == NULL) { D("%s: can't find '%s' in /proc/cmdline", __FUNCTION__, KERNEL_OPTION ); exit(1); } p += sizeof(KERNEL_OPTION)-1; /* skip option */ q = p; while ( *q && *q != ' ' && *q != '\t' ) q += 1; snprintf( buff, sizeof(buff), "/dev/%.*s", q-p, p ); multiplexer_init( m, buff ); } D("multiplexer inited, creating default channels"); /* now setup all default channels */ { int nn; for (nn = 0; default_channels[nn].name != NULL; nn++) { char control_name[32]; int fd; Channel* chan; const char* name = default_channels[nn].name; ChannelType ctype = default_channels[nn].ctype; snprintf(control_name, sizeof(control_name), "%s%s", QEMUD_PREFIX, name); if ((fd = android_get_control_socket(control_name)) < 0) { D("couldn't get fd for control socket '%s'", name); continue; } D( "got control socket '%s' on fd %d", control_name, fd); multiplexer_add_channel( m, fd, name, ctype ); } } D( "entering main loop"); looper_loop( m->looper ); D( "unexpected termination !!" ); return 0; }