Files
android_development/emulator/qtools/callstack.h
Jack Veenstra 2bb9bb4546 Handle munmap() and add support for tracing JNI (native) calls.
The munmap() kernel calls are traced but the tracing code wasn't doing
anything with them.  This caused the number of mapped regions in a process
to grow large in some cases and also caused symbol lookup errors in some
rare cases.  This change also adds support for new trace record types
for supporting JNI (native) calls from Java into native code. This helps
with constructing a more accurate call stack.
2009-05-19 15:07:29 -07:00

776 lines
27 KiB
C++

// Copyright 2006 The Android Open Source Project
#ifndef CALL_STACK_H
#define CALL_STACK_H
#include "opcode.h"
#include "armdis.h"
class CallStackBase {
public:
int getId() { return mId; }
void setId(int id) { mId = id; }
private:
int mId;
};
// Define a template class for the stack frame. The template parameter
// SYM is the symbol_type from the TraceReader<> template class. To
// use the CallStack class, the user derives a subclass of StackFrame
// and defines push() and pop() methods. This derived class is then
// passed as a template parameter to CallStack.
template <class SYM>
class StackFrame {
public:
virtual ~StackFrame() {};
virtual void push(int stackLevel, uint64_t time, CallStackBase *base) {};
virtual void pop(int stackLevel, uint64_t time, CallStackBase *base) {};
typedef SYM symbol_type;
static const uint32_t kCausedException = 0x01;
static const uint32_t kInterpreted = 0x02;
static const uint32_t kStartNative = 0x04;
static const uint32_t kPopBarrier = (kCausedException | kInterpreted
| kStartNative);
symbol_type *function; // the symbol for the function we entered
uint32_t addr; // return address when this function returns
uint32_t flags;
uint32_t time; // for debugging when a problem occurred
uint32_t global_time; // for debugging when a problem occurred
};
template <class FRAME, class BASE = CallStackBase>
class CallStack : public BASE {
public:
typedef FRAME frame_type;
typedef typename FRAME::symbol_type symbol_type;
typedef typename FRAME::symbol_type::region_type region_type;
typedef BASE base_type;
CallStack(int id, int numFrames, TraceReaderType *trace);
~CallStack();
void updateStack(BBEvent *event, symbol_type *function);
void popAll(uint64_t time);
void threadStart(uint64_t time);
void threadStop(uint64_t time);
// Set to true if you don't want to see any Java methods ever
void setNativeOnly(bool nativeOnly) {
mNativeOnly = nativeOnly;
}
int getStackLevel() { return mTop; }
uint64_t getGlobalTime(uint64_t time) { return time + mSkippedTime; }
void showStack(FILE *stream);
int mNumFrames;
FRAME *mFrames;
int mTop; // index of the next stack frame to write
private:
enum Action { NONE, PUSH, POP, NATIVE_PUSH };
Action getAction(BBEvent *event, symbol_type *function);
void doMethodAction(BBEvent *event, symbol_type *function);
void doMethodPop(BBEvent *event, uint32_t addr, const uint32_t flags);
void doSimplePush(symbol_type *function, uint32_t addr,
uint64_t time, int flags);
void doSimplePop(uint64_t time);
void doPush(BBEvent *event, symbol_type *function);
void doPop(BBEvent *event, symbol_type *function, Action methodAction);
TraceReaderType *mTrace;
// This is a global switch that disables Java methods from appearing
// on the stack.
bool mNativeOnly;
// This keeps track of whether native frames are currently allowed on the
// stack.
bool mAllowNativeFrames;
symbol_type mDummyFunction;
region_type mDummyRegion;
symbol_type *mPrevFunction;
BBEvent mPrevEvent;
symbol_type *mUserFunction;
BBEvent mUserEvent; // the previous user-mode event
uint64_t mSkippedTime;
uint64_t mLastRunTime;
static MethodRec sCurrentMethod;
static MethodRec sNextMethod;
};
template<class FRAME, class BASE>
MethodRec CallStack<FRAME, BASE>::sCurrentMethod;
template<class FRAME, class BASE>
MethodRec CallStack<FRAME, BASE>::sNextMethod;
template<class FRAME, class BASE>
CallStack<FRAME, BASE>::CallStack(int id, int numFrames, TraceReaderType *trace)
{
mNativeOnly = false;
mTrace = trace;
BASE::setId(id);
mNumFrames = numFrames;
mFrames = new FRAME[mNumFrames];
mTop = 0;
mAllowNativeFrames = true;
memset(&mDummyFunction, 0, sizeof(symbol_type));
memset(&mDummyRegion, 0, sizeof(region_type));
mDummyFunction.region = &mDummyRegion;
mPrevFunction = &mDummyFunction;
memset(&mPrevEvent, 0, sizeof(BBEvent));
mUserFunction = &mDummyFunction;
memset(&mUserEvent, 0, sizeof(BBEvent));
mSkippedTime = 0;
mLastRunTime = 0;
// Read the first two methods from the trace if we haven't already read
// from the method trace yet.
if (sCurrentMethod.time == 0) {
if (mTrace->ReadMethod(&sCurrentMethod)) {
sCurrentMethod.time = ~0ull;
sNextMethod.time = ~0ull;
}
if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
}
template<class FRAME, class BASE>
CallStack<FRAME, BASE>::~CallStack()
{
delete mFrames;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::updateStack(BBEvent *event, symbol_type *function)
{
if (mNativeOnly) {
// If this is an interpreted function, then use the native VM function
// instead.
if (function->vm_sym != NULL)
function = function->vm_sym;
} else {
doMethodAction(event, function);
}
Action action = getAction(event, function);
// Allow native frames if we are executing in the kernel.
if (!mAllowNativeFrames
&& (function->region->flags & region_type::kIsKernelRegion) == 0) {
action = NONE;
}
if (function->vm_sym != NULL) {
function = function->vm_sym;
function->vm_sym = NULL;
}
if (action == PUSH) {
doPush(event, function);
} else if (action == POP) {
doPop(event, function, NONE);
}
#if 0
// Pop off native functions before pushing or popping Java methods.
if (action == POP && mPrevFunction->vm_sym == NULL) {
// Pop off the previous function first.
doPop(event, function, NONE);
if (methodAction == POP) {
doPop(event, function, POP);
} else if (methodAction == PUSH) {
doPush(event, function);
}
} else {
if (methodAction != NONE) {
// If the method trace has a push or pop, then do it.
action = methodAction;
} else if (function->vm_sym != NULL) {
// This function is a Java method. Don't push or pop the
// Java method without a corresponding method trace record.
action = NONE;
}
if (action == POP) {
doPop(event, function, methodAction);
} else if (action == PUSH) {
doPush(event, function);
}
}
#endif
// If the stack is now empty, then push the current function.
if (mTop == 0) {
uint64_t time = event->time - mSkippedTime;
int flags = 0;
if (function->vm_sym != NULL) {
flags = FRAME::kInterpreted;
}
doSimplePush(function, 0, time, 0);
}
mPrevFunction = function;
mPrevEvent = *event;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::threadStart(uint64_t time)
{
mSkippedTime += time - mLastRunTime;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::threadStop(uint64_t time)
{
mLastRunTime = time;
}
template<class FRAME, class BASE>
typename CallStack<FRAME, BASE>::Action
CallStack<FRAME, BASE>::getAction(BBEvent *event, symbol_type *function)
{
Action action;
uint32_t offset;
// Compute the offset from the start of the function to this basic
// block address.
offset = event->bb_addr - function->addr - function->region->base_addr;
// Get the previously executed instruction
Opcode op = OP_INVALID;
int numInsns = mPrevEvent.num_insns;
uint32_t insn = 0;
if (numInsns > 0) {
insn = mPrevEvent.insns[numInsns - 1];
if (mPrevEvent.is_thumb) {
insn = insn_unwrap_thumb(insn);
op = decode_insn_thumb(insn);
} else {
op = Arm::decode(insn);
}
}
// The number of bytes in the previous basic block depends on
// whether the basic block was ARM or THUMB instructions.
int numBytes;
if (mPrevEvent.is_thumb) {
numBytes = numInsns << 1;
} else {
numBytes = numInsns << 2;
}
// If this basic block follows the previous one, then return NONE.
// If we don't do this, then we may be fooled into thinking this
// is a POP if the previous block ended with a conditional
// (non-executed) ldmia instruction. We do this check before
// checking if we are in a different function because we otherwise
// we might be fooled into thinking this is a PUSH to a new function
// when it is really just a fall-thru into a local kernel symbol
// that just looks like a new function.
uint32_t prev_end_addr = mPrevEvent.bb_addr + numBytes;
if (prev_end_addr == event->bb_addr) {
return NONE;
}
// If this basic block is in the same function as the last basic block,
// then just return NONE (but see the exceptions below).
// Exception 1: if the function calls itself (offset == 0) then we
// want to push this function.
// Exception 2: if the function returns to itself, then we want
// to pop this function. We detect this case by checking if the last
// instruction in the previous basic block was a load-multiple (ldm)
// and included r15 as one of the loaded registers.
if (function == mPrevFunction) {
if (numInsns > 0) {
// If this is the beginning of the function and the previous
// instruction was not a branch, then it's a PUSH.
if (offset == 0 && op != OP_B && op != OP_THUMB_B)
return PUSH;
// If the previous instruction was an ldm that loaded r15,
// then it's a POP.
if (offset != 0 && ((op == OP_LDM && (insn & 0x8000))
|| (op == OP_THUMB_POP && (insn & 0x100)))) {
return POP;
}
}
return NONE;
}
// We have to figure out if this new function is a call or a
// return. We don't necessarily have a complete call stack (since
// we could have started tracing at any point), so we have to use
// heuristics. If the address we are jumping to is the beginning
// of a function, or if the instruction that took us there was
// either "bl" or "blx" then this is a PUSH. Also, if the
// function offset is non-zero and the previous instruction is a
// branch instruction, we will call it a PUSH. This happens in
// the kernel a lot when there is a branch to an offset from a
// label. A couple more special cases:
//
// - entering a .plt section ("procedure linkage table") is a PUSH,
// - an exception that jumps into the kernel vector entry point
// is also a push.
//
// If the function offset is non-zero and the previous instruction
// is a bx or some non-branch instruction, then it's a POP.
//
// There's another special case that comes up. The user code
// might execute an instruction that returns but before the pc
// starts executing in the caller, a kernel interrupt occurs.
// But it may be hard to tell if this is a return until after
// the kernel interrupt code is done and returns to user space.
// So we save the last user basic block and look at it when
// we come back into user space.
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
if (((mPrevFunction->region->flags & kIsKernelRegion) == 0)
&& (function->region->flags & kIsKernelRegion)) {
// We just switched into the kernel. Save the previous
// user-mode basic block and function.
mUserEvent = mPrevEvent;
mUserFunction = mPrevFunction;
} else if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)) {
// We just switched from kernel to user mode.
return POP;
}
action = PUSH;
if (offset != 0 && mPrevFunction != &mDummyFunction) {
// We are jumping into the middle of a function, so this is
// probably a return, not a function call. But look at the
// previous instruction first to see if it was a branch-and-link.
// If the previous instruction was not a branch (and not a
// branch-and-link) then POP; or if it is a "bx" instruction
// then POP because that is used to return from functions.
if (!isBranch(op) || op == OP_BX || op == OP_THUMB_BX) {
action = POP;
} else if (isBranch(op) && !isBranchLink(op)) {
// If the previous instruction was a normal branch to a
// local symbol then don't count it as a push or a pop.
action = NONE;
}
if (function->flags & symbol_type::kIsVectorTable)
action = PUSH;
}
return action;
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doPush(BBEvent *event, symbol_type *function)
{
uint64_t time = event->time - mSkippedTime;
// Check for stack overflow
if (mTop >= mNumFrames) {
// Don't show the stack by default because this generates a lot
// of output and this is seen by users if there is an error when
// post-processing the trace. But this is useful for debugging.
#if 0
showStack(stderr);
#endif
fprintf(stderr, "Error: stack overflow (%d frames)\n", mTop);
exit(1);
}
// Compute the return address here because we may need to change
// it if we are popping off a frame for a vector table.
int numBytes;
if (mPrevEvent.is_thumb) {
numBytes = mPrevEvent.num_insns << 1;
} else {
numBytes = mPrevEvent.num_insns << 2;
}
uint32_t retAddr = mPrevEvent.bb_addr + numBytes;
// If this is a Java method then set the return address to zero.
// We won't be using it for popping the method and it may lead
// to false matches when searching the stack.
if (function->vm_sym != NULL) {
retAddr = 0;
}
#if 0
// For debugging only. Show the stack before entering the kernel
// exception-handling code.
if (function->flags & symbol_type::kIsVectorStart) {
printf("stack before entering exception\n");
showStack(stderr);
}
#endif
// If the top of stack is a vector table, then pop it
// off before pushing on the new function. Also, change the
// return address for the new function to the return address
// from the vector table.
if (mTop > 0
&& (mFrames[mTop - 1].function->flags & symbol_type::kIsVectorTable)) {
retAddr = mFrames[mTop - 1].addr;
doSimplePop(time);
}
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
// The following code handles the case where one function, F1,
// calls another function, F2, but the before F2 can start
// executing, it takes a page fault (on the first instruction
// in F2). The kernel is entered, handles the page fault, and
// then returns to the called function. The problem is that
// this looks like a new function call to F2 from the kernel.
// The following code cleans up the stack by popping the
// kernel frames back to F1 (but not including F1). The
// return address for F2 also has to be fixed up to point to
// F1 instead of the kernel.
//
// We detect this case by checking if the previous basic block
// was in the kernel and the current basic block is not.
if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)
&& mTop > 0) {
// We are switching from kernel mode to user mode.
#if 0
// For debugging.
printf(" doPush(): popping to user mode, bb_addr: 0x%08x\n",
event->bb_addr);
showStack(stderr);
#endif
do {
// Pop off the kernel frames until we reach the one that
// caused the exception.
doSimplePop(time);
// If the next stack frame is the one that caused an
// exception then stop popping frames.
if (mTop > 0
&& (mFrames[mTop - 1].flags & FRAME::kCausedException)) {
mFrames[mTop - 1].flags &= ~FRAME::kCausedException;
retAddr = mFrames[mTop].addr;
break;
}
} while (mTop > 0);
#if 0
// For debugging
printf(" doPush() popping to level %d, using retAddr 0x%08x\n",
mTop, retAddr);
#endif
}
// If we are starting an exception handler, then mark the previous
// stack frame so that we know where to return when the exception
// handler finishes.
if ((function->flags & symbol_type::kIsVectorStart) && mTop > 0)
mFrames[mTop - 1].flags |= FRAME::kCausedException;
// If the function being pushed is a Java method, then mark it on
// the stack so that we don't pop it off until we get a matching
// trace record from the method trace file.
int flags = 0;
if (function->vm_sym != NULL) {
flags = FRAME::kInterpreted;
}
doSimplePush(function, retAddr, time, flags);
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doSimplePush(symbol_type *function, uint32_t addr,
uint64_t time, int flags)
{
// Check for stack overflow
if (mTop >= mNumFrames) {
showStack(stderr);
fprintf(stderr, "too many stack frames (%d)\n", mTop);
exit(1);
}
mFrames[mTop].addr = addr;
mFrames[mTop].function = function;
mFrames[mTop].flags = flags;
mFrames[mTop].time = time;
mFrames[mTop].global_time = time + mSkippedTime;
mFrames[mTop].push(mTop, time, this);
mTop += 1;
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doSimplePop(uint64_t time)
{
if (mTop <= 0) {
return;
}
mTop -= 1;
mFrames[mTop].pop(mTop, time, this);
if (mNativeOnly)
return;
// If the stack is empty, then allow more native frames.
// Otherwise, if we are transitioning from Java to native, then allow
// more native frames.
// Otherwise, if we are transitioning from native to Java, then disallow
// more native frames.
if (mTop == 0) {
mAllowNativeFrames = true;
} else {
bool newerIsJava = (mFrames[mTop].flags & FRAME::kInterpreted) != 0;
bool olderIsJava = (mFrames[mTop - 1].flags & FRAME::kInterpreted) != 0;
if (newerIsJava && !olderIsJava) {
// We are transitioning from Java to native
mAllowNativeFrames = true;
} else if (!newerIsJava && olderIsJava) {
// We are transitioning from native to Java
mAllowNativeFrames = false;
}
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doPop(BBEvent *event, symbol_type *function,
Action methodAction)
{
uint64_t time = event->time - mSkippedTime;
// Search backward on the stack for a matching return address.
// The most common case is that we pop one stack frame, but
// sometimes we pop more than one.
int stackLevel;
bool allowMethodPop = (methodAction == POP);
for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) {
if (event->bb_addr == mFrames[stackLevel].addr) {
// We found a matching return address on the stack.
break;
}
// If this stack frame caused an exception, then do not pop
// this stack frame.
if (mFrames[stackLevel].flags & FRAME::kPopBarrier) {
// If this is a Java method, then allow a pop only if we
// have a matching trace record.
if (mFrames[stackLevel].flags & FRAME::kInterpreted) {
if (allowMethodPop) {
// Allow at most one method pop
allowMethodPop = false;
continue;
}
}
stackLevel += 1;
break;
}
}
// If we didn't find a matching return address then search the stack
// again for a matching function.
if (stackLevel < 0 || event->bb_addr != mFrames[stackLevel].addr) {
bool allowMethodPop = (methodAction == POP);
for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) {
// Compare the function with the one in the stack frame.
if (function == mFrames[stackLevel].function) {
// We found a matching function. We want to pop up to but not
// including this frame. But allow popping this frame if this
// method called itself and we have a method pop.
if (allowMethodPop && function == mPrevFunction) {
// pop this frame
break;
}
// do not pop this frame
stackLevel += 1;
break;
}
// If this stack frame caused an exception, then do not pop
// this stack frame.
if (mFrames[stackLevel].flags & FRAME::kPopBarrier) {
// If this is a Java method, then allow a pop only if we
// have a matching trace record.
if (mFrames[stackLevel].flags & FRAME::kInterpreted) {
if (allowMethodPop) {
// Allow at most one method pop
allowMethodPop = false;
continue;
}
}
stackLevel += 1;
break;
}
}
if (stackLevel < 0)
stackLevel = 0;
}
// Note that if we didn't find a matching stack frame, we will pop
// the whole stack (unless there is a Java method or exception
// frame on the stack). This is intentional because we may have
// started the trace in the middle of an executing program that is
// returning up the stack and we do not know the whole stack. So
// the right thing to do is to empty the stack.
// If we are emptying the stack, then add the current function
// on top. If the current function is the same as the top of
// stack, then avoid an extraneous pop and push.
if (stackLevel == 0 && mFrames[0].function == function)
stackLevel = 1;
#if 0
// If we are popping off a large number of stack frames, then
// we might have a bug.
if (mTop - stackLevel > 7) {
printf("popping thru level %d\n", stackLevel);
showStack(stderr);
}
#endif
// Pop the stack frames
for (int ii = mTop - 1; ii >= stackLevel; --ii)
doSimplePop(time);
// Clear the "caused exception" bit on the current stack frame
if (mTop > 0) {
mFrames[mTop - 1].flags &= ~FRAME::kCausedException;
}
// Also handle the case where F1 calls F2 and F2 returns to
// F1, but before we can execute any instructions in F1, we
// switch to the kernel. Then when we return from the kernel
// we want to pop off F2 from the stack instead of pushing F1
// on top of F2. To handle this case, we saved the last
// user-mode basic block when we entered the kernel (in
// the getAction() function) and now we can check to see if
// that was a return to F1 instead of a call. We use the
// getAction() function to determine this.
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)) {
mPrevEvent = mUserEvent;
mPrevFunction = mUserFunction;
if (getAction(event, function) == POP) {
// We may need to pop more than one frame, so just
// call doPop() again. This won't be an infinite loop
// here because we changed mPrevEvent to the last
// user-mode event.
doPop(event, function, methodAction);
return;
}
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::popAll(uint64_t time)
{
time -= mSkippedTime;
while (mTop != 0) {
doSimplePop(time);
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doMethodPop(BBEvent *event, uint32_t addr,
const uint32_t flags)
{
uint64_t time = event->time - mSkippedTime;
// Search the stack from the top down for a frame that contains a
// matching method.
int stackLevel;
for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) {
if (mFrames[stackLevel].flags & flags) {
// If we are searching for a native method, then don't bother trying
// to match the address.
if (flags == FRAME::kStartNative)
break;
symbol_type *func = mFrames[stackLevel].function;
uint32_t methodAddr = func->region->base_addr + func->addr;
if (methodAddr == addr) {
break;
}
}
}
// If we found a matching frame then pop the stack up to and including
// that frame.
if (stackLevel >= 0) {
// Pop the stack frames
for (int ii = mTop - 1; ii >= stackLevel; --ii)
doSimplePop(time);
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doMethodAction(BBEvent *event, symbol_type *function)
{
// If the events get ahead of the method trace, then read ahead until we
// sync up again. This can happen if there is a pop of a method in the
// method trace for which we don't have a previous push. Such an unmatched
// pop can happen because the user can start tracing at any time and so
// there might already be a stack when we start tracing.
while (event->time >= sNextMethod.time) {
sCurrentMethod = sNextMethod;
if (mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
if (event->time >= sCurrentMethod.time && event->pid == sCurrentMethod.pid) {
uint64_t time = event->time - mSkippedTime;
int flags = sCurrentMethod.flags;
if (flags == kMethodEnter) {
doSimplePush(function, 0, time, FRAME::kInterpreted);
mAllowNativeFrames = false;
} else if (flags == kNativeEnter) {
doSimplePush(function, 0, time, FRAME::kStartNative);
mAllowNativeFrames = true;
} else if (flags == kMethodExit || flags == kMethodException) {
doMethodPop(event, sCurrentMethod.addr, FRAME::kInterpreted);
} else if (flags == kNativeExit || flags == kNativeException) {
doMethodPop(event, sCurrentMethod.addr, FRAME::kStartNative);
}
// We found a match, so read the next record. When we get to the end
// of the trace, we set the time to the maximum value (~0).
sCurrentMethod = sNextMethod;
if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::showStack(FILE *stream)
{
fprintf(stream, "mTop: %d skippedTime: %llu\n", mTop, mSkippedTime);
for (int ii = 0; ii < mTop; ++ii) {
uint32_t addr = mFrames[ii].function->addr;
addr += mFrames[ii].function->region->vstart;
fprintf(stream, " %d: t %d gt %d f %x 0x%08x 0x%08x %s\n",
ii, mFrames[ii].time, mFrames[ii].global_time,
mFrames[ii].flags,
mFrames[ii].addr, addr,
mFrames[ii].function->name);
}
}
#endif /* CALL_STACK_H */