This patch modifies the NDK build scripts to support the 'armeabi-v7a' ABI. (For the record, it corresponds to Thumb-2 + FPU support, to speed up native code on certain devices like the Droid). To build for this ABI, the Application.mk file should use a line like: APP_ABI := armeabi-v7a It is also possible to build for both 'armeabi' and 'armeabi-v7a' by using: APP_ABI := armeabi armeabi-v7a This will result in the generation of two distinct shared libraries that both will be copied to the final application package. This is dependent on having GCC 4.4.0 prebuilt binaries under build/prebuilt/<host>/arm-eabi-4.4.0, since gcc 4.2.1 does not support this new ABI. Note that this also changes the NDK to use gcc 4.4.0 by default, unless the user defines NDK_TOOLCHAIN to 'arm-eabi-4.2.1' in its environment to switch back to the previous one.
226 lines
8.2 KiB
Plaintext
226 lines
8.2 KiB
Plaintext
Android Native CPU ABI Management
|
|
|
|
|
|
Introduction:
|
|
=============
|
|
|
|
Every piece of native code generated with the Android NDK matches a given
|
|
"Application Binary Interface" (ABI) that defines exactly how your
|
|
application's machine code is expected to interact with the system at
|
|
runtime.
|
|
|
|
A typical ABI describes things in *excruciating* details, and will typically
|
|
include the following information:
|
|
|
|
- the CPU instruction set that the machine code should use
|
|
|
|
- the endianess of memory stores and loads at runtime
|
|
|
|
- the format of executable binaries (shared libraries, programs, etc...)
|
|
and what type of content is allowed/supported in them.
|
|
|
|
- various conventions used to pass data between your code and
|
|
the system (e.g. how registers and/or the stack are used when functions
|
|
are called, alignment constraints, etc...)
|
|
|
|
- alignment and size constraints for enum types, structure fields and
|
|
arrays.
|
|
|
|
- the list of function symbols available to your machine code at runtime,
|
|
generally from a very specific selected set of libraries.
|
|
|
|
This document lists the exact ABIs supported by the Android NDK and the
|
|
official Android platform releases.
|
|
|
|
|
|
I. Supported ABIs:
|
|
==================
|
|
|
|
Each supported ABI is identified by a unique name.
|
|
|
|
|
|
I.1. 'armeabi'
|
|
--------------
|
|
|
|
This is the name of an ABI for ARM-based CPUs that support *at* *least*
|
|
the ARMv5TE instruction set. Please refer to following documentation for
|
|
more details:
|
|
|
|
- ARM Architecture Reference manual (a.k.a ARMARM)
|
|
- Procedure Call Standard for the ARM Architecture (a.k.a. AAPCS)
|
|
- ELF for the ARM Architecture (a.k.a. ARMELF)
|
|
- ABI for the ARM Architecture (a.k.a. BSABI)
|
|
- Base Platform ABI for the ARM Architecture (a.k.a. BPABI)
|
|
- C Library ABI for the ARM Architecture (a.k.a. CLIABI)
|
|
- C++ ABI for the ARM Architecture (a.k.a. CPPABI)
|
|
- Runtime ABI for the ARM Architecture (a.k.a. RTABI)
|
|
|
|
- ELF System V Application Binary Interface
|
|
(DRAFT - 24 April 2001)
|
|
|
|
- Generic C++ ABI (http://www.codesourcery.com/public/cxx-abi/abi.html)
|
|
|
|
Note that the AAPCS standard defines 'EABI' as a moniker used to specify
|
|
a _family_ of similar but distinct ABIs. Android follows the little-endian
|
|
ARM GNU/Linux ABI as documented in the following document:
|
|
|
|
http://www.codesourcery.com/gnu_toolchains/arm/arm_gnu_linux_abi.pdf
|
|
|
|
With the exception that wchar_t is only one byte. This should not matter
|
|
in practice since wchar_t is simply *not* really supported by the Android
|
|
platform anyway.
|
|
|
|
This ABI does *not* support hardware-assisted floating point computations.
|
|
Instead, all FP operations are performed through software helper functions
|
|
that come from the compiler's libgcc.a static library.
|
|
|
|
Thumb (a.k.a. Thumb-1) instructions are supported. Note that the NDK
|
|
will generate thumb code by default, unless you define LOCAL_ARM_MODE
|
|
in your Android.mk (see docs/ANDROID-MK.TXT for all details).
|
|
|
|
|
|
I.2. 'armeabi-v7a'
|
|
------------------
|
|
|
|
This is the name of another ARM-based CPU ABI that *extends* 'armeabi' to
|
|
include a few CPU instruction set extensions as described in the following
|
|
document:
|
|
|
|
- ARM Architecture v7-a Reference Manual
|
|
|
|
The instruction extensions supported by this Android-specific ABI are:
|
|
|
|
- The Thumb-2 instruction set extension.
|
|
- The VFP hardware FPU instructions.
|
|
|
|
More specifically, VFPv3-D32 is being used, which corresponds to 32
|
|
dedicated 64-bit floating point registers provided by the CPU.
|
|
|
|
Other extensions described by the v7-a ARM like Advanced SIMD (a.k.a. NEON)
|
|
or ThumbEE are optional to this ABI, which means that developers should
|
|
check *at* *runtime* whether the extensions are available and provide
|
|
alternative code paths if this is not the case.
|
|
|
|
(Just like one typically does on x86 systems to check/use MMX/SSE2/etc...
|
|
specialized instructions).
|
|
|
|
IMPORTANT NOTE: This ABI enforces that all double values are passed during
|
|
function calls in 'core' register pairs, instead of dedicated FP ones.
|
|
However, all internal computations can be performed with the FP registers
|
|
and will be greatly sped up.
|
|
|
|
This little constraint, while resulting in a slight decrease of
|
|
performance, ensures binary compatibility with all existing 'armeabi'
|
|
binaries.
|
|
|
|
IMPORTANT NOTE: The 'armeabi-v7a' machine code will *not* run on ARMv5 or
|
|
ARMv6 based devices.
|
|
|
|
|
|
II. Generating code for a specific ABI:
|
|
=======================================
|
|
|
|
By default, the NDK will generate machine code for the 'armeabi' ABI.
|
|
You can however add the following line to your Application.mk to generate
|
|
ARMv7-a compatible machine code instead:
|
|
|
|
APP_ABI := armeabi-v7a
|
|
|
|
It is also possible to build machine code for *two* distinct ABIs by using:
|
|
|
|
APP_ABI := armeabi armeabi-v7a
|
|
|
|
This will instruct the NDK to build two versions of your machine code: one for
|
|
each ABI listed on this line. Both libraries will be copied to your application
|
|
project path and will be ultimately packaged into your .apk.
|
|
|
|
Such a package is called a "fat binary" in Android speak since it contains
|
|
machine code for more than one CPU architecture. At installation time, the
|
|
package manager will only unpack the most appropriate machine code for the
|
|
target device. See below for details.
|
|
|
|
|
|
|
|
III. ABI Management on the Android platform:
|
|
============================================
|
|
|
|
This section provides specific details about how the Android platform manages
|
|
native code in application packages.
|
|
|
|
|
|
III.1. Native code in Application Packages:
|
|
-------------------------------------------
|
|
|
|
It is expected that shared libraries generated with the NDK are stored in
|
|
the final application package (.apk) at locations of the form:
|
|
|
|
lib/<abi>/lib<name>.so
|
|
|
|
Where <abi> is one of the ABI names listed in section II above, and <name>
|
|
is a name that can be used when loading the shared library from the VM
|
|
as in:
|
|
|
|
System.loadLibrary("<name>");
|
|
|
|
Since .apk files are just zip files, you can trivially list their content
|
|
with a command like:
|
|
|
|
unzip -l <apk>
|
|
|
|
to verify that the native shared libraries you want are indeed at the
|
|
proper location. You can also place native shared libraries at other
|
|
locations within the .apk, but they will be ignored by the system, or more
|
|
precisely by the steps described below; you will need to extract/install
|
|
them manually in your application.
|
|
|
|
In the case of a "fat" binary, two distinct libraries are thus placed in
|
|
the .apk, for example at:
|
|
|
|
lib/armeabi/libfoo.so
|
|
lib/armeabi-v7a/libfoo.so
|
|
|
|
|
|
III.2. Android Platform ABI support:
|
|
------------------------------------
|
|
|
|
The Android system knows at runtime which ABI(s) it supports. More
|
|
precisely, up to two build-specific system properties are used to
|
|
indicate:
|
|
|
|
- the 'primary' ABI for the device, corresponding to the machine
|
|
code used in the system image itself.
|
|
|
|
- an optional 'secondary' ABI, corresponding to another ABI that
|
|
is also supported by the system image.
|
|
|
|
For example, a typical ARMv5TE-based device would only define
|
|
the primary ABI as 'armeabi' and not define a secondary one.
|
|
|
|
On the other hand, a typical ARMv7-based device would define the
|
|
primary ABI to 'armeabi-v7a' and the secondary one to 'armeabi'
|
|
since it can run application native binaries generated for both
|
|
of them.
|
|
|
|
|
|
III.3. Automatic extraction of native code at install time:
|
|
-----------------------------------------------------------
|
|
|
|
When installing an application, the package manager service will scan
|
|
the .apk and look for any shared library of the form:
|
|
|
|
lib/<primary-abi>/lib<name>.so
|
|
|
|
If one is found, then it is copied under $APPDIR/lib/lib<name>.so,
|
|
where $APPDIR corresponds to the application's specific data directory.
|
|
|
|
If none is found, and a secondary ABI is defined, the service will
|
|
then scan for shared libraries of the form:
|
|
|
|
lib/<secondary-abi>/lib<name>.so
|
|
|
|
If anything is found, then it is copied under $APPDIR/lib/lib<name>.so
|
|
|
|
This mechanism ensures that the best machine code for the target
|
|
device is automatically extracted from the package at installation
|
|
time.
|