334 lines
11 KiB
C++
334 lines
11 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ObjLoader.h"
|
|
#include <rsFileA3D.h>
|
|
#include <sstream>
|
|
|
|
ObjLoader::ObjLoader() :
|
|
mPositionsStride(3), mNormalsStride(3), mTextureCoordsStride(2) {
|
|
|
|
}
|
|
|
|
bool isWhitespace(char c) {
|
|
const char whiteSpace[] = { ' ', '\n', '\t', '\f', '\r' };
|
|
const uint32_t numWhiteSpaceChars = 5;
|
|
for (uint32_t i = 0; i < numWhiteSpaceChars; i ++) {
|
|
if (whiteSpace[i] == c) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void eatWhitespace(std::istream &is) {
|
|
while(is.good() && isWhitespace(is.peek())) {
|
|
is.get();
|
|
}
|
|
}
|
|
|
|
bool getToken(std::istream &is, std::string &token) {
|
|
eatWhitespace(is);
|
|
token.clear();
|
|
char c;
|
|
while(is.good() && !isWhitespace(is.peek())) {
|
|
c = is.get();
|
|
if (is.good()){
|
|
token += c;
|
|
}
|
|
}
|
|
return token.size() > 0;
|
|
}
|
|
|
|
void appendDataFromStream(std::vector<float> &dataVec, uint32_t numFloats, std::istream &is) {
|
|
std::string token;
|
|
for (uint32_t i = 0; i < numFloats; i ++){
|
|
bool valid = getToken(is, token);
|
|
if (valid) {
|
|
dataVec.push_back((float)atof(token.c_str()));
|
|
} else {
|
|
fprintf(stderr, "Encountered error reading geometry data");
|
|
dataVec.push_back(0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool checkNegativeIndex(int idx) {
|
|
if(idx < 0) {
|
|
fprintf(stderr, "Negative indices are not supported. Skipping face\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ObjLoader::parseRawFaces(){
|
|
// We need at least a triangle
|
|
if (mRawFaces.size() < 3) {
|
|
return;
|
|
}
|
|
|
|
const char slash = '/';
|
|
mParsedFaces.resize(mRawFaces.size());
|
|
for (uint32_t i = 0; i < mRawFaces.size(); i ++) {
|
|
size_t firstSeparator = mRawFaces[i].find_first_of(slash);
|
|
size_t nextSeparator = mRawFaces[i].find_last_of(slash);
|
|
|
|
// Use the string as a temp buffer to parse the index
|
|
// Insert 0 instead of the slash to avoid substrings
|
|
if (firstSeparator != std::string::npos) {
|
|
mRawFaces[i][firstSeparator] = 0;
|
|
}
|
|
// Simple case, only one index
|
|
int32_t vIdx = atoi(mRawFaces[i].c_str());
|
|
// We do not support negative indices
|
|
if (!checkNegativeIndex(vIdx)) {
|
|
return;
|
|
}
|
|
// obj indices things beginning 1
|
|
mParsedFaces[i].vertIdx = (uint32_t)vIdx - 1;
|
|
|
|
if (nextSeparator != std::string::npos && nextSeparator != firstSeparator) {
|
|
mRawFaces[i][nextSeparator] = 0;
|
|
uint32_t nIdx = atoi(mRawFaces[i].c_str() + nextSeparator + 1);
|
|
if (!checkNegativeIndex(nIdx)) {
|
|
return;
|
|
}
|
|
// obj indexes things beginning 1
|
|
mParsedFaces[i].normIdx = (uint32_t)nIdx - 1;
|
|
}
|
|
|
|
// second case is where we have vertex and texture indices
|
|
if (nextSeparator != std::string::npos &&
|
|
(nextSeparator > firstSeparator + 1 || nextSeparator == firstSeparator)) {
|
|
uint32_t tIdx = atoi(mRawFaces[i].c_str() + firstSeparator + 1);
|
|
if (!checkNegativeIndex(tIdx)) {
|
|
return;
|
|
}
|
|
// obj indexes things beginning 1
|
|
mParsedFaces[i].texIdx = (uint32_t)tIdx - 1;
|
|
}
|
|
}
|
|
|
|
// Make sure a face list exists before we go adding to it
|
|
if (mMeshes.back().mUnfilteredFaces.size() == 0) {
|
|
mMeshes.back().appendUnfilteredFaces(mLastMtl);
|
|
}
|
|
|
|
// Now we have our parsed face, that we need to triangulate as necessary
|
|
// Treat more complex polygons as fans.
|
|
// This approach will only work only for convex polygons
|
|
// but concave polygons need to be addressed elsewhere anyway
|
|
for (uint32_t next = 1; next < mParsedFaces.size() - 1; next ++) {
|
|
// push it to our current mesh
|
|
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[0]);
|
|
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next]);
|
|
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next + 1]);
|
|
}
|
|
}
|
|
|
|
void ObjLoader::checkNewMeshCreation(std::string &newGroup) {
|
|
// start a new mesh if we have some faces
|
|
// accumulated on the current mesh.
|
|
// It's possible to have multiple group statements
|
|
// but we only care to actually start a new mesh
|
|
// once we can have something we can draw on the previous one
|
|
if (mMeshes.back().mUnfilteredFaces.size()) {
|
|
mMeshes.push_back(ObjMesh());
|
|
}
|
|
|
|
mMeshes.back().mName = newGroup;
|
|
printf("Converting vertex group: %s\n", newGroup.c_str());
|
|
}
|
|
|
|
void ObjLoader::handleObjLine(char *line) {
|
|
const char* vtxToken = "v";
|
|
const char* normToken = "vn";
|
|
const char* texToken = "vt";
|
|
const char* groupToken = "g";
|
|
const char* mtlToken = "usemtl";
|
|
const char* faceToken = "f";
|
|
|
|
std::istringstream lineStream(line, std::istringstream::in);
|
|
|
|
std::string token;
|
|
bool valid = getToken(lineStream, token);
|
|
if (!valid) {
|
|
return;
|
|
}
|
|
|
|
if (token == vtxToken) {
|
|
appendDataFromStream(mObjPositions, 3, lineStream);
|
|
} else if (token == normToken) {
|
|
appendDataFromStream(mObjNormals, 3, lineStream);
|
|
} else if (token == texToken) {
|
|
appendDataFromStream(mObjTextureCoords, 2, lineStream);
|
|
} else if (token == groupToken) {
|
|
valid = getToken(lineStream, token);
|
|
checkNewMeshCreation(token);
|
|
} else if (token == faceToken) {
|
|
mRawFaces.clear();
|
|
while(getToken(lineStream, token)) {
|
|
mRawFaces.push_back(token);
|
|
}
|
|
parseRawFaces();
|
|
}
|
|
// Ignore materials for now
|
|
else if (token == mtlToken) {
|
|
valid = getToken(lineStream, token);
|
|
mLastMtl = token;
|
|
|
|
mMeshes.back().appendUnfilteredFaces(token);
|
|
}
|
|
}
|
|
|
|
bool ObjLoader::init(const char *fileName) {
|
|
|
|
std::ifstream ifs(fileName , std::ifstream::in);
|
|
if (!ifs.good()) {
|
|
fprintf(stderr, "Failed to read file %s.\n", fileName);
|
|
return false;
|
|
}
|
|
|
|
mMeshes.clear();
|
|
|
|
const uint32_t maxBufferSize = 2048;
|
|
char *buffer = new char[maxBufferSize];
|
|
|
|
mMeshes.push_back(ObjMesh());
|
|
|
|
std::string token;
|
|
bool isDone = false;
|
|
while(!isDone) {
|
|
ifs.getline(buffer, maxBufferSize);
|
|
if (ifs.good() && ifs.gcount() > 0) {
|
|
handleObjLine(buffer);
|
|
} else {
|
|
isDone = true;
|
|
}
|
|
}
|
|
|
|
ifs.close();
|
|
delete buffer;
|
|
|
|
reIndexGeometry();
|
|
|
|
return true;
|
|
}
|
|
|
|
void ObjLoader::reIndexGeometry() {
|
|
// We want to know where each vertex lands
|
|
mVertexRemap.resize(mObjPositions.size() / mPositionsStride);
|
|
|
|
for (uint32_t m = 0; m < mMeshes.size(); m ++) {
|
|
// clear the remap vector of old data
|
|
for (uint32_t r = 0; r < mVertexRemap.size(); r ++) {
|
|
mVertexRemap[r].clear();
|
|
}
|
|
|
|
for (uint32_t i = 0; i < mMeshes[m].mUnfilteredFaces.size(); i ++) {
|
|
mMeshes[m].mTriangleLists[i].reserve(mMeshes[m].mUnfilteredFaces[i].size() * 2);
|
|
for (uint32_t fI = 0; fI < mMeshes[m].mUnfilteredFaces[i].size(); fI ++) {
|
|
uint32_t newIndex = reIndexGeometryPrim(mMeshes[m], mMeshes[m].mUnfilteredFaces[i][fI]);
|
|
mMeshes[m].mTriangleLists[i].push_back(newIndex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t ObjLoader::reIndexGeometryPrim(ObjMesh &mesh, PrimitiveVtx &prim) {
|
|
|
|
std::vector<float> &mPositions = mesh.mChannels[0].mData;
|
|
std::vector<float> &mNormals = mesh.mChannels[1].mData;
|
|
std::vector<float> &mTextureCoords = mesh.mChannels[2].mData;
|
|
|
|
float posX = mObjPositions[prim.vertIdx * mPositionsStride + 0];
|
|
float posY = mObjPositions[prim.vertIdx * mPositionsStride + 1];
|
|
float posZ = mObjPositions[prim.vertIdx * mPositionsStride + 2];
|
|
|
|
float normX = 0.0f;
|
|
float normY = 0.0f;
|
|
float normZ = 0.0f;
|
|
if (prim.normIdx != MAX_INDEX) {
|
|
normX = mObjNormals[prim.normIdx * mNormalsStride + 0];
|
|
normY = mObjNormals[prim.normIdx * mNormalsStride + 1];
|
|
normZ = mObjNormals[prim.normIdx * mNormalsStride + 2];
|
|
}
|
|
|
|
float texCoordX = 0.0f;
|
|
float texCoordY = 0.0f;
|
|
if (prim.texIdx != MAX_INDEX) {
|
|
texCoordX = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 0];
|
|
texCoordY = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 1];
|
|
}
|
|
|
|
std::vector<unsigned int> &ithRemapList = mVertexRemap[prim.vertIdx];
|
|
// We may have some potential vertices we can reuse
|
|
// loop over all the potential candidates and see if any match our guy
|
|
for (unsigned int i = 0; i < ithRemapList.size(); i ++) {
|
|
|
|
int ithRemap = ithRemapList[i];
|
|
// compare existing vertex with the new one
|
|
if (mPositions[ithRemap * mPositionsStride + 0] != posX ||
|
|
mPositions[ithRemap * mPositionsStride + 1] != posY ||
|
|
mPositions[ithRemap * mPositionsStride + 2] != posZ) {
|
|
continue;
|
|
}
|
|
|
|
// Now go over normals
|
|
if (prim.normIdx != MAX_INDEX) {
|
|
if (mNormals[ithRemap * mNormalsStride + 0] != normX ||
|
|
mNormals[ithRemap * mNormalsStride + 1] != normY ||
|
|
mNormals[ithRemap * mNormalsStride + 2] != normZ) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// And texcoords
|
|
if (prim.texIdx != MAX_INDEX) {
|
|
if (mTextureCoords[ithRemap * mTextureCoordsStride + 0] != texCoordX ||
|
|
mTextureCoords[ithRemap * mTextureCoordsStride + 1] != texCoordY) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we got here the new vertex is identical to the one that we already stored
|
|
return ithRemap;
|
|
}
|
|
|
|
// We did not encounter this vertex yet, store it and return its index
|
|
mPositions.push_back(posX);
|
|
mPositions.push_back(posY);
|
|
mPositions.push_back(posZ);
|
|
|
|
if (prim.normIdx != MAX_INDEX) {
|
|
mNormals.push_back(normX);
|
|
mNormals.push_back(normY);
|
|
mNormals.push_back(normZ);
|
|
}
|
|
|
|
if (prim.texIdx != MAX_INDEX) {
|
|
mTextureCoords.push_back(texCoordX);
|
|
mTextureCoords.push_back(texCoordY);
|
|
}
|
|
|
|
// We need to remember this mapping. Since we are storing floats, not vec3's, need to
|
|
// divide by position size to get the right index
|
|
int currentVertexIndex = (mPositions.size()/mPositionsStride) - 1;
|
|
ithRemapList.push_back(currentVertexIndex);
|
|
|
|
return currentVertexIndex;
|
|
}
|