// // C++ Implementation: gptpart // // Description: Class to implement a SINGLE GPT partition // // // Author: Rod Smith , (C) 2009 // // Copyright: See COPYING file that comes with this distribution // // // This program is copyright (c) 2009 by Roderick W. Smith. It is distributed // under the terms of the GNU GPL version 2, as detailed in the COPYING file. #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #include #include #include #include "gptpart.h" #include "attributes.h" using namespace std; PartTypes GPTPart::typeHelper; GPTPart::GPTPart(void) { int i; for (i = 0; i < NAME_SIZE; i++) name[i] = '\0'; } // Default constructor GPTPart::~GPTPart(void) { } // destructor // Return the gdisk-specific two-byte hex code for the partition uint16_t GPTPart::GetHexType(void) { return typeHelper.GUIDToID(partitionType); } // GPTPart::GetHexType() // Return a plain-text description of the partition type (e.g., "Linux/Windows // data" or "Linux swap"). string GPTPart::GetNameType(void) { return typeHelper.GUIDToName(partitionType); } // GPTPart::GetNameType() // Compute and return the partition's length (or 0 if the end is incorrectly // set before the beginning). uint64_t GPTPart::GetLengthLBA(void) { uint64_t length = 0; if (firstLBA <= lastLBA) length = lastLBA - firstLBA + UINT64_C(1); return length; } // GPTPart::GetLengthLBA() // Return partition's name field, converted to a C++ ASCII string string GPTPart::GetName(void) { string theName; int i; theName = ""; for (i = 0; i < NAME_SIZE; i += 2) { if (name[i] != '\0') theName += name[i]; } // for return theName; } // GPTPart::GetName() // Set the type code to the specified one. Also changes the partition // name *IF* the current name is the generic one for the current partition // type. void GPTPart::SetType(struct GUIDData t) { int nameSame = 1, currentLength, i; if (GetName() == typeHelper.GUIDToName(partitionType)) { SetName(typeHelper.GUIDToName(t)); } // if partitionType = t; } // GPTPart::SetType() // Sets the unique GUID to a value of 0 or a random value, // depending on the parameter: 0 = 0, anything else = random void GPTPart::SetUniqueGUID(int zeroOrRandom) { if (zeroOrRandom == 0) { uniqueGUID.data1 = 0; uniqueGUID.data2 = 0; } else { // rand() is only 32 bits on 32-bit systems, so multiply together to // fill a 64-bit value. uniqueGUID.data1 = (uint64_t) rand() * (uint64_t) rand(); uniqueGUID.data2 = (uint64_t) rand() * (uint64_t) rand(); } } // GPTPart::SetUniqueGUID() // Set the name for a partition to theName, or prompt for a name if // theName is empty. Note that theName is a standard C++-style ASCII // string, although the GUID partition definition requires a UTF-16LE // string. This function creates a simple-minded copy for this. void GPTPart::SetName(const string & theName) { char newName[NAME_SIZE]; // New name char *junk; int i; // Blank out new name string, just to be on the safe side.... for (i = 0; i < NAME_SIZE; i++) newName[i] = '\0'; if (theName == "") { // No name specified, so get one from the user cout << "Enter name: "; junk = fgets(newName, NAME_SIZE / 2, stdin); // Input is likely to include a newline, so remove it.... i = strlen(newName); if (newName[i - 1] == '\n') newName[i - 1] = '\0'; } else { strcpy(newName, theName.substr(0, NAME_SIZE / 2).c_str()); } // if // Copy the C-style ASCII string from newName into a form that the GPT // table will accept.... for (i = 0; i < NAME_SIZE; i++) { if ((i % 2) == 0) { name[i] = newName[(i / 2)]; } else { name[i] = '\0'; } // if/else } // for } // GPTPart::SetName() GPTPart & GPTPart::operator=(const GPTPart & orig) { int i; partitionType = orig.partitionType; uniqueGUID = orig.uniqueGUID; firstLBA = orig.firstLBA; lastLBA = orig.lastLBA; attributes = orig.attributes; for (i = 0; i < NAME_SIZE; i++) name[i] = orig.name[i]; return *this; } // assignment operator // Display summary information; does nothing if the partition is empty. void GPTPart::ShowSummary(int partNum, uint32_t blockSize) { string sizeInSI; int i; if (firstLBA != 0) { sizeInSI = BytesToSI(blockSize * (lastLBA - firstLBA + 1)); cout.width(4); cout << partNum + 1 << " "; cout.width(14); cout << firstLBA << " "; cout.width(14); cout << lastLBA << " "; cout << BytesToSI(blockSize * (lastLBA - firstLBA + 1)) << " "; for (i = 0; i < 9 - sizeInSI.length(); i++) cout << " "; cout.fill('0'); cout.width(4); cout.setf(ios::uppercase); cout << hex << typeHelper.GUIDToID(partitionType) << " " << dec; cout.fill(' '); // cout.setf(ios::right); cout << GetName().substr(0, 23) << "\n"; cout.fill(' '); } // if } // GPTPart::ShowSummary() // Show detailed partition information. Does nothing if the partition is // empty (as determined by firstLBA being 0). void GPTPart::ShowDetails(uint32_t blockSize) { uint64_t size; if (firstLBA != 0) { cout << "Partition GUID code: " << GUIDToStr(partitionType); cout << " (" << typeHelper.GUIDToName(partitionType) << ")\n"; cout << "Partition unique GUID: " << GUIDToStr(uniqueGUID) << "\n"; cout << "First sector: " << firstLBA << " (at " << BytesToSI(firstLBA * blockSize) << ")\n"; cout << "Last sector: " << lastLBA << " (at " << BytesToSI(lastLBA * blockSize) << ")\n"; size = (lastLBA - firstLBA + 1); cout << "Partition size: " << size << " sectors (" << BytesToSI(size * ((uint64_t) blockSize)) << ")\n"; cout << "Attribute flags: "; cout.fill('0'); cout.width(16); cout << hex; cout << attributes << "\n"; cout << dec; cout << "Partition name: " << GetName() << "\n"; cout.fill(' '); } // if } // GPTPart::ShowDetails() // Blank (delete) a single partition void GPTPart::BlankPartition(void) { int j; GUIDData zeroGUID; zeroGUID.data1 = 0; zeroGUID.data2 = 0; uniqueGUID = zeroGUID; partitionType = zeroGUID; firstLBA = 0; lastLBA = 0; attributes = 0; for (j = 0; j < NAME_SIZE; j++) name[j] = '\0'; } // GPTPart::BlankPartition // Returns 1 if the two partitions overlap, 0 if they don't int GPTPart::DoTheyOverlap(const GPTPart & other) { int theyDo = 0; // Don't bother checking unless these are defined (both start and end points // are 0 for undefined partitions, so just check the start points) if ((firstLBA != 0) && (other.firstLBA != 0)) { if ((firstLBA < other.lastLBA) && (lastLBA >= other.firstLBA)) theyDo = 1; if ((other.firstLBA < lastLBA) && (other.lastLBA >= firstLBA)) theyDo = 1; } // if return (theyDo); } // GPTPart::DoTheyOverlap() // Reverse the bytes of integral data types; used on big-endian systems. void GPTPart::ReversePartBytes(void) { ReverseBytes(&partitionType.data1, 8); ReverseBytes(&partitionType.data2, 8); ReverseBytes(&uniqueGUID.data1, 8); ReverseBytes(&uniqueGUID.data2, 8); ReverseBytes(&firstLBA, 8); ReverseBytes(&lastLBA, 8); ReverseBytes(&attributes, 8); } // GPTPart::ReverseBytes() /**************************************** * Functions requiring user interaction * ****************************************/ // Change the type code on the partition. void GPTPart::ChangeType(void) { char line[255]; char* junk; int typeNum = 0xFFFF; GUIDData newType; cout << "Current type is '" << GetNameType() << "'\n"; while ((!typeHelper.Valid(typeNum)) && (typeNum != 0)) { cout << "Hex code (L to show codes, 0 to enter raw code, Enter = 0700): "; junk = fgets(line, 255, stdin); sscanf(line, "%X", &typeNum); if ((line[0] == 'L') || (line[0] == 'l')) typeHelper.ShowTypes(); if (line[0] == '\n') { typeNum = 0x0700; } // if } // while if (typeNum != 0) // user entered a code, so convert it newType = typeHelper.IDToGUID((uint16_t) typeNum); else // user wants to enter the GUID directly, so do that newType = GetGUID(); SetType(newType); cout << "Changed type of partition to '" << typeHelper.GUIDToName(partitionType) << "'\n"; } // GPTPart::ChangeType() /*********************************** * Non-class but related functions * ***********************************/ // Recursive quick sort algorithm for GPT partitions. Note that if there // are any empties in the specified range, they'll be sorted to the // start, resulting in a sorted set of partitions that begins with // partition 2, 3, or higher. void QuickSortGPT(GPTPart* partitions, int start, int finish) { uint64_t starterValue; // starting location of median partition int left, right; GPTPart temp; left = start; right = finish; starterValue = partitions[(start + finish) / 2].GetFirstLBA(); do { while (partitions[left].GetFirstLBA() < starterValue) left++; while (partitions[right].GetFirstLBA() > starterValue) right--; if (left <= right) { temp = partitions[left]; partitions[left] = partitions[right]; partitions[right] = temp; left++; right--; } // if } while (left <= right); if (start < right) QuickSortGPT(partitions, start, right); if (finish > left) QuickSortGPT(partitions, left, finish); } // QuickSortGPT()