// parttypes.cc // Class to manage partition type codes -- a slight variant on MBR type // codes, GUID type codes, and associated names. /* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #include #include #include #include #include "parttypes.h" using namespace std; int PartTypes::numInstances = 0; AType* PartTypes::allTypes = NULL; AType* PartTypes::lastType = NULL; // Constructor. Its main task is to initialize the data list, but only // if this is the first instance, since it's a static linked list. // Partition type codes are MBR type codes multiplied by 0x0100, with // additional related codes taking on following numbers. For instance, // the FreeBSD disklabel code in MBR is 0xa5; here, it's 0xa500, with // additional FreeBSD codes being 0xa501, 0xa502, and so on. This gives // related codes similar numbers and (given appropriate entry positions // in the linked list) keeps them together in the listings generated // by typing "L" at the main gdisk menu. // See http://www.win.tue.nl/~aeb/partitions/partition_types-1.html // for a list of MBR partition type codes. PartTypes::PartTypes(void) { numInstances++; if (numInstances == 1) { // Start with the "unused entry," which should normally appear only // on empty partition table entries.... AddType(0x0000, UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000000), "Unused entry", 0); // DOS/Windows partition types, which confusingly Linux also uses in GPT AddType(0x0100, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-12 AddType(0x0400, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-16 < 32M AddType(0x0600, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-16 AddType(0x0700, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 1); // NTFS (or could be HPFS) AddType(0x0b00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-32 AddType(0x0c00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-32 LBA AddType(0x0c01, UINT64_C(0x4DB80B5CE3C9E316), UINT64_C(0xAE1502F02DF97D81), "Microsoft Reserved"); // Microsoft reserved AddType(0x0e00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // FAT-16 LBA AddType(0x1100, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-12 AddType(0x1400, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-16 < 32M AddType(0x1600, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-16 AddType(0x1700, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden NTFS (or could be HPFS) AddType(0x1b00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-32 AddType(0x1c00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-32 LBA AddType(0x1e00, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Hidden FAT-16 LBA AddType(0x2700, UINT64_C(0x4D4006D1DE94BBA4), UINT64_C(0xACD67901D5BF6AA1), "Windows RE"); // Windows RE AddType(0x4200, UINT64_C(0x4F621431Af9B60A0), UINT64_C(0xAD694A71113368BC), "Windows LDM data"); // Logical disk manager AddType(0x4201, UINT64_C(0x42E07E8F5808C8AA), UINT64_C(0xB3CF3404E9E1D285), "Windows LDM metadata"); // Logical disk manager // Linux-specific partition types.... AddType(0x8200, UINT64_C(0x43C4A4AB0657FD6D), UINT64_C(0x4F4F4BC83309E584), "Linux swap"); // Linux swap (or could be Solaris) AddType(0x8300, UINT64_C(0x4433B9E5EBD0A0A2), UINT64_C(0xC79926B7B668C087), "Linux/Windows data", 0); // Linux native AddType(0x8301, UINT64_C(0x60C000078DA63339), UINT64_C(0x080923C83A0836C4), "Linux Reserved"); // Linux reserved AddType(0x8e00, UINT64_C(0x44C2F507E6D6D379), UINT64_C(0x28F93D2A8F233CA2), "Linux LVM"); // Linux LVM // FreeBSD partition types.... // Note: Rather than extract FreeBSD disklabel data, convert FreeBSD // partitions in-place, and let FreeBSD sort out the details.... AddType(0xa500, UINT64_C(0x11D66ECF516E7CB4), UINT64_C(0x2B71092D0200F88F), "FreeBSD disklabel"); // FreeBSD disklabel AddType(0xa501, UINT64_C(0x11DC7F4183BD6B9D), UINT64_C(0x0F4FB86015000BBE), "FreeBSD boot"); // FreeBSD boot AddType(0xa502, UINT64_C(0x11D66ECF516E7CB5), UINT64_C(0x2B71092D0200F88F), "FreeBSD swap"); // FreeBSD swap AddType(0xa503, UINT64_C(0x11D66ECF516E7CB6), UINT64_C(0x2B71092D0200F88F), "FreeBSD UFS"); // FreeBSD UFS AddType(0xa504, UINT64_C(0x11D66ECF516E7CBA), UINT64_C(0x2B71092D0200F88F), "FreeBSD ZFS"); // FreeBSD ZFS AddType(0xa505, UINT64_C(0x11D66ECF516E7CB8), UINT64_C(0x2B71092D0200F88F), "FreeBSD Vinum/RAID"); // FreeBSD Vinum // A MacOS partition type, separated from others by NetBSD partition types... AddType(0xa800, UINT64_C(0x11AA000055465300), UINT64_C(0xACEC4365300011AA), "Apple UFS"); // MacOS X // NetBSD partition types. Note that the main entry sets it up as a // FreeBSD disklabel. I'm not 100% certain this is the correct behavior. AddType(0xa900, UINT64_C(0x11D66ECF516E7CB4), UINT64_C(0x2B71092D0200F88F), "FreeBSD disklabel", 0); // NetBSD disklabel AddType(0xa901, UINT64_C(0x11DCB10E49F48D32), UINT64_C(0x489687D119009BB9), "NetBSD swap"); AddType(0xa902, UINT64_C(0x11DCB10E49F48D5A), UINT64_C(0x489687D119009BB9), "NetBSD FFS"); AddType(0xa903, UINT64_C(0x11DCB10E49F48D82), UINT64_C(0x489687D119009BB9), "NetBSD LFS"); AddType(0xa903, UINT64_C(0x11DCB10E49F48DAA), UINT64_C(0x489687D119009BB9), "NetBSD RAID"); AddType(0xa904, UINT64_C(0x11DCB10F2DB519C4), UINT64_C(0x489687D119009BB9), "NetBSD concatenated"); AddType(0xa905, UINT64_C(0x11DCB10F2DB519EC), UINT64_C(0x489687D119009BB9), "NetBSD encrypted"); // MacOS partition types (See also 0xa800, above).... AddType(0xab00, UINT64_C(0x11AA0000426F6F74), UINT64_C(0xACEC4365300011AA), "Apple boot"); // MacOS X AddType(0xaf00, UINT64_C(0x11AA000048465300), UINT64_C(0xACEC4365300011AA), "Apple HFS/HFS+"); // MacOS X AddType(0xaf01, UINT64_C(0x11AA000052414944), UINT64_C(0xACEC4365300011AA), "Apple RAID"); // MacOS X AddType(0xaf02, UINT64_C(0x11AA5F4F52414944), UINT64_C(0xACEC4365300011AA), "Apple RAID offline"); // MacOS X AddType(0xaf03, UINT64_C(0x11AA6C004C616265), UINT64_C(0xACEC4365300011AA), "Apple label"); // MacOS X AddType(0xaf04, UINT64_C(0x11AA76655265636F), UINT64_C(0xACEC4365300011AA), "AppleTV recovery"); // MacOS X // Solaris partition types (one of which is shared with MacOS) AddType(0xbe00, UINT64_C(0x11B21DD26A82CB45), UINT64_C(0x316673200008A699), "Solaris boot"); // Solaris boot AddType(0xbf00, UINT64_C(0x11B21DD26a85CF4D), UINT64_C(0x316673200008A699), "Solaris root"); // Solaris root AddType(0xbf01, UINT64_C(0x11B21DD26A898CC3), UINT64_C(0x316673200008A699), "Solaris /usr & Mac ZFS"); // MacOS X & Solaris AddType(0xbf02, UINT64_C(0x11B21DD26A87C46F), UINT64_C(0x316673200008A699), "Solaris swap"); AddType(0xbf03, UINT64_C(0x11B21DD26A8B642B), UINT64_C(0x316673200008A699), "Solaris backup"); AddType(0xbf04, UINT64_C(0x11B21DD26A8EF2E9), UINT64_C(0x316673200008A699), "Solaris /var"); AddType(0xbf05, UINT64_C(0x11B21DD26A90BA39), UINT64_C(0x316673200008A699), "Solaris /home"); AddType(0xbf05, UINT64_C(0x11B21DD26A9283A5), UINT64_C(0x316673200008A699), "Solaris EFI_ALTSCTR"); AddType(0xbf06, UINT64_C(0x11B21DD26A945A3B), UINT64_C(0x316673200008A699), "Solaris Reserved 1"); AddType(0xbf07, UINT64_C(0x11B21DD26A9630D1), UINT64_C(0x316673200008A699), "Solaris Reserved 2"); AddType(0xbf08, UINT64_C(0x11B21DD26A980767), UINT64_C(0x316673200008A699), "Solaris Reserved 3"); AddType(0xbf09, UINT64_C(0x11B21DD26A96237F), UINT64_C(0x316673200008A699), "Solaris Reserved 4"); AddType(0xbf0a, UINT64_C(0x11B21DD26A8D2AC7), UINT64_C(0x316673200008A699), "Solaris Reserved 5"); // I can find no MBR equivalents for these, but they're on the // Wikipedia page for GPT, so here we go.... AddType(0xc001, UINT64_C(0x11D33AEB75894C1E), UINT64_C(0x000000A0037BC1B7), "HP-UX data"); AddType(0xc002, UINT64_C(0x11D632E3E2A1E728), UINT64_C(0x000000A0037B82A6), "HP-UX service"); // EFI system and related partitions AddType(0xEF00, UINT64_C(0x11d2f81fc12a7328), UINT64_C(0x3bc93ec9a0004bba), "EFI System"); // EFI System (parted marks Linux boot // partitions like this) AddType(0xEF01, UINT64_C(0x11d333e7024dee41), UINT64_C(0x9FF381C70800699d), "MBR partition scheme"); // Used to nest an MBR table on a GPT disk AddType(0xEF02, UINT64_C(0x6E6F644921686148), UINT64_C(0x4946456465654E74), "BIOS boot partition"); // // A straggler Linux partition type.... AddType(0xfd00, UINT64_C(0x4D3B05FCA19D880F), UINT64_C(0x1E91840F3F7406A0), "Linux RAID"); // Linux RAID } // if } // default constructor PartTypes::~PartTypes(void) { AType* tempType; numInstances--; if (numInstances == 0) { while (allTypes != NULL) { tempType = allTypes; allTypes = allTypes->next; delete tempType; } // while } // if } // destructor // Add a single type to the linked list of types. Returns 1 if operation // succeeds, 0 otherwise. int PartTypes::AddType(uint16_t mbrType, uint64_t guidData1, uint64_t guidData2, const char * n, int toDisplay) { AType* tempType; int allOK = 1; tempType = new AType; if (tempType != NULL) { tempType->MBRType = mbrType; tempType->GUIDType.data1 = guidData1; tempType->GUIDType.data2 = guidData2; tempType->name = n; tempType->display = toDisplay; tempType->next = NULL; if (allTypes == NULL) { // first entry allTypes = tempType; } else { lastType->next = tempType; } // if/else lastType = tempType; } else { allOK = 0; } // if/else return allOK; } // PartTypes::AddType() // Displays the available types and my extended MBR codes for same.... // Note: This function assumes an 80-column display. On wider displays, // it stops at under 80 columns; on narrower displays, lines will wrap // in an ugly way. void PartTypes::ShowTypes(void) { int colCount = 1; // column count size_t i; AType* thisType = allTypes; cout.unsetf(ios::uppercase); while (thisType != NULL) { if (thisType->display == 1) { // show it cout.fill('0'); cout.width(4); cout << hex << thisType->MBRType << " "; cout << thisType->name.substr(0, 20); for (i = 0; i < (20 - (thisType->name.substr(0, 20).length())); i++) cout << " "; if ((colCount % 3) == 0) cout << "\n"; else cout << " "; colCount++; } // if thisType = thisType->next; } // while cout.fill(' '); cout << "\n" << dec; } // PartTypes::ShowTypes() // Returns 1 if code is a valid extended MBR code, 0 if it's not int PartTypes::Valid(uint16_t code) { AType* thisType = allTypes; int found = 0; while ((thisType != NULL) && (!found)) { if (thisType->MBRType == code) { found = 1; } // if thisType = thisType->next; } // while return found; } // PartTypes::Valid() // Convert a GUID code to a name. string PartTypes::GUIDToName(struct GUIDData typeCode) { AType* theItem = allTypes; int found = 0; string typeName; while ((theItem != NULL) && (!found)) { if ((theItem->GUIDType.data1 == typeCode.data1) && (theItem->GUIDType.data2 == typeCode.data2)) { // found it! typeName = theItem->name; found = 1; } else { theItem = theItem->next; } // if/else } // while if (!found) { typeName = "Unknown"; } // if (!found) return typeName; } // PartTypes::GUIDToName() // This function takes a variant of the MBR partition type code and // converts it to a GUID type code struct GUIDData PartTypes::IDToGUID(uint16_t ID) { AType* theItem = allTypes; int found = 0; struct GUIDData theGUID; // Start by assigning a default GUID for the return value. Done // "raw" to avoid the necessity for a recursive call and the // remote possibility of an infinite recursive loop that this // approach would present.... theGUID.data1 = UINT64_C(0x4433B9E5EBD0A0A2); theGUID.data2 = UINT64_C(0xC79926B7B668C087); // Now search the type list for a match to the ID.... while ((theItem != NULL) && (!found)) { if (theItem->MBRType == ID) { // found it! theGUID = theItem->GUIDType; found = 1; } else { theItem = theItem->next; } // if/else } // while if (!found) { cout.setf(ios::uppercase); cout.fill('0'); cout << "Exact type match not found for type code "; cout.width(4); cout << hex << ID << "; assigning type code for\n'Linux/Windows data'\n" << dec; cout.fill(' '); } // if (!found) return theGUID; } // PartTypes::IDToGUID() // Convert a GUID to a 16-bit variant of the MBR ID number. // Note that this function ignores entries for which the display variable // is set to 0. This enables control of which values get returned when // there are multiple possibilities, but opens the algorithm up to the // potential for problems should the data in the list be bad. uint16_t PartTypes::GUIDToID(struct GUIDData typeCode) { AType* theItem = allTypes; int found = 0; uint16_t theID = 0xFFFF; while ((theItem != NULL) && (!found)) { if ((theItem->GUIDType.data1 == typeCode.data1) && (theItem->GUIDType.data2 == typeCode.data2) && (theItem->display == 1)) { // found it! theID = theItem->MBRType; found = 1; } else { theItem = theItem->next; } // if/else } // while if (!found) { theID = 0xFFFF; } // if (!found) return theID; } // PartTypes::GUIDToID()