291 lines
9.1 KiB
C++
291 lines
9.1 KiB
C++
//
|
|
// C++ Implementation: gptpart
|
|
//
|
|
// Description: Class to implement a SINGLE GPT partition
|
|
//
|
|
//
|
|
// Author: Rod Smith <rodsmith@rodsbooks.com>, (C) 2009
|
|
//
|
|
// Copyright: See COPYING file that comes with this distribution
|
|
//
|
|
//
|
|
// This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
|
|
// under the terms of the GNU GPL version 2, as detailed in the COPYING file.
|
|
|
|
#define __STDC_LIMIT_MACROS
|
|
#define __STDC_CONSTANT_MACROS
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include "gptpart.h"
|
|
#include "attributes.h"
|
|
|
|
using namespace std;
|
|
|
|
PartTypes GPTPart::typeHelper;
|
|
|
|
GPTPart::GPTPart(void) {
|
|
int i;
|
|
|
|
for (i = 0; i < NAME_SIZE; i++)
|
|
name[i] = '\0';
|
|
} // Default constructor
|
|
|
|
GPTPart::~GPTPart(void) {
|
|
} // destructor
|
|
|
|
// Return partition's name field, converted to a C++ ASCII string
|
|
string GPTPart::GetName(void) {
|
|
string theName;
|
|
int i;
|
|
|
|
for (i = 0; i < NAME_SIZE; i += 2) {
|
|
theName += name[i];
|
|
} // for
|
|
return theName;
|
|
} // GPTPart::GetName()
|
|
|
|
// Return the gdisk-specific two-byte hex code for the partition
|
|
uint16_t GPTPart::GetHexType(void) {
|
|
return typeHelper.GUIDToID(partitionType);
|
|
} // GPTPart::GetHexType()
|
|
|
|
// Return a plain-text description of the partition type (e.g., "Linux/Windows
|
|
// data" or "Linux swap").
|
|
string GPTPart::GetNameType(void) {
|
|
return typeHelper.GUIDToName(partitionType);
|
|
} // GPTPart::GetNameType()
|
|
|
|
// Compute and return the partition's length (or 0 if the end is incorrectly
|
|
// set before the beginning).
|
|
uint64_t GPTPart::GetLengthLBA(void) {
|
|
uint64_t length = 0;
|
|
if (firstLBA <= lastLBA)
|
|
length = lastLBA - firstLBA + UINT64_C(1);
|
|
return length;
|
|
} // GPTPart::GetLengthLBA()
|
|
|
|
GPTPart & GPTPart::operator=(const GPTPart & orig) {
|
|
int i;
|
|
|
|
partitionType = orig.partitionType;
|
|
uniqueGUID = orig.uniqueGUID;
|
|
firstLBA = orig.firstLBA;
|
|
lastLBA = orig.lastLBA;
|
|
attributes = orig.attributes;
|
|
for (i = 0; i < NAME_SIZE; i++)
|
|
name[i] = orig.name[i];
|
|
return *this;
|
|
} // assignment operator
|
|
|
|
// Sets the unique GUID to a value of 0 or a random value,
|
|
// depending on the parameter: 0 = 0, anything else = random
|
|
void GPTPart::SetUniqueGUID(int zeroOrRandom) {
|
|
if (zeroOrRandom == 0) {
|
|
uniqueGUID.data1 = 0;
|
|
uniqueGUID.data2 = 0;
|
|
} else {
|
|
// rand() is only 32 bits on 32-bit systems, so multiply together to
|
|
// fill a 64-bit value.
|
|
uniqueGUID.data1 = (uint64_t) rand() * (uint64_t) rand();
|
|
uniqueGUID.data2 = (uint64_t) rand() * (uint64_t) rand();
|
|
}
|
|
} // GPTPart::SetUniqueGUID()
|
|
|
|
// Blank (delete) a single partition
|
|
void GPTPart::BlankPartition(void) {
|
|
int j;
|
|
GUIDData zeroGUID;
|
|
|
|
zeroGUID.data1 = 0;
|
|
zeroGUID.data2 = 0;
|
|
uniqueGUID = zeroGUID;
|
|
partitionType = zeroGUID;
|
|
firstLBA = 0;
|
|
lastLBA = 0;
|
|
attributes = 0;
|
|
for (j = 0; j < NAME_SIZE; j++)
|
|
name[j] = '\0';
|
|
} // GPTPart::BlankPartition
|
|
|
|
// Returns 1 if the two partitions overlap, 0 if they don't
|
|
int GPTPart::DoTheyOverlap(GPTPart* other) {
|
|
int theyDo = 0;
|
|
|
|
// Don't bother checking unless these are defined (both start and end points
|
|
// are 0 for undefined partitions, so just check the start points)
|
|
if ((firstLBA != 0) && (other->firstLBA != 0)) {
|
|
if ((firstLBA < other->lastLBA) && (lastLBA >= other->firstLBA))
|
|
theyDo = 1;
|
|
if ((other->firstLBA < lastLBA) && (other->lastLBA >= firstLBA))
|
|
theyDo = 1;
|
|
} // if
|
|
return (theyDo);
|
|
} // GPTPart::DoTheyOverlap()
|
|
|
|
// Reverse the bytes of integral data types; used on big-endian systems.
|
|
void GPTPart::ReversePartBytes(void) {
|
|
ReverseBytes(&partitionType.data1, 8);
|
|
ReverseBytes(&partitionType.data2, 8);
|
|
ReverseBytes(&uniqueGUID.data1, 8);
|
|
ReverseBytes(&uniqueGUID.data2, 8);
|
|
ReverseBytes(&firstLBA, 8);
|
|
ReverseBytes(&lastLBA, 8);
|
|
ReverseBytes(&attributes, 8);
|
|
} // GPTPart::ReverseBytes()
|
|
|
|
// Display summary information; does nothing if the partition is empty.
|
|
void GPTPart::ShowSummary(int partNum, uint32_t blockSize) {
|
|
string sizeInSI;
|
|
int i;
|
|
|
|
if (firstLBA != 0) {
|
|
sizeInSI = BytesToSI(blockSize * (lastLBA - firstLBA + 1));
|
|
cout.width(4);
|
|
cout << partNum + 1 << " ";
|
|
cout.width(14);
|
|
cout << firstLBA << " ";
|
|
cout.width(14);
|
|
cout << lastLBA << " ";
|
|
cout << BytesToSI(blockSize * (lastLBA - firstLBA + 1)) << " ";
|
|
for (i = 0; i < 9 - sizeInSI.length(); i++) cout << " ";
|
|
cout.fill('0');
|
|
cout.width(4);
|
|
cout.setf(ios::uppercase);
|
|
cout << hex << typeHelper.GUIDToID(partitionType) << " " << dec;
|
|
cout.fill(' ');
|
|
cout.setf(ios::right);
|
|
cout << GetName().substr(0, 23) << "\n";
|
|
cout.fill(' ');
|
|
} // if
|
|
} // GPTPart::ShowSummary()
|
|
|
|
// Show detailed partition information. Does nothing if the partition is
|
|
// empty (as determined by firstLBA being 0).
|
|
void GPTPart::ShowDetails(uint32_t blockSize) {
|
|
uint64_t size;
|
|
|
|
if (firstLBA != 0) {
|
|
cout << "Partition GUID code: " << GUIDToStr(partitionType);
|
|
cout << " (" << typeHelper.GUIDToName(partitionType) << ")\n";
|
|
cout << "Partition unique GUID: " << GUIDToStr(uniqueGUID) << "\n";
|
|
|
|
cout << "First sector: " << firstLBA << " (at "
|
|
<< BytesToSI(firstLBA * blockSize) << ")\n";
|
|
cout << "Last sector: " << lastLBA << " (at "
|
|
<< BytesToSI(lastLBA * blockSize) << ")\n";
|
|
size = (lastLBA - firstLBA + 1);
|
|
cout << "Partition size: " << size << " sectors ("
|
|
<< BytesToSI(size * ((uint64_t) blockSize)) << ")\n";
|
|
cout << "Attribute flags: ";
|
|
cout.fill('0');
|
|
cout.width(16);
|
|
cout << right;
|
|
cout << hex;
|
|
cout << attributes << "\n";
|
|
cout << left;
|
|
cout << dec;
|
|
cout << "Partition name: " << GetName() << "\n";
|
|
} // if
|
|
} // GPTPart::ShowDetails()
|
|
|
|
/****************************************
|
|
* Functions requiring user interaction *
|
|
****************************************/
|
|
|
|
// Change the type code on the partition.
|
|
void GPTPart::ChangeType(void) {
|
|
char line[255];
|
|
char* junk;
|
|
int typeNum = 0xFFFF;
|
|
GUIDData newType;
|
|
|
|
cout << "Current type is '" << GetNameType() << "'\n";
|
|
while ((!typeHelper.Valid(typeNum)) && (typeNum != 0)) {
|
|
cout << "Hex code (L to show codes, 0 to enter raw code, Enter = 0700): ";
|
|
junk = fgets(line, 255, stdin);
|
|
sscanf(line, "%X", &typeNum);
|
|
if ((line[0] == 'L') || (line[0] == 'l'))
|
|
typeHelper.ShowTypes();
|
|
if (line[0] == '\n') {
|
|
typeNum = 0x0700;
|
|
} // if
|
|
} // while
|
|
if (typeNum != 0) // user entered a code, so convert it
|
|
newType = typeHelper.IDToGUID((uint16_t) typeNum);
|
|
else // user wants to enter the GUID directly, so do that
|
|
newType = GetGUID();
|
|
partitionType = newType;
|
|
cout << "Changed type of partition to '" << typeHelper.GUIDToName(partitionType) << "'\n";
|
|
} // GPTPart::ChangeType()
|
|
|
|
// Set the name for a partition to theName, or prompt for a name if
|
|
// theName is empty. Note that theName is a standard C++-style ASCII
|
|
// string, although the GUID partition definition requires a UTF-16LE
|
|
// string. This function creates a simple-minded copy for this.
|
|
void GPTPart::SetName(string theName) {
|
|
char newName[NAME_SIZE]; // New name
|
|
char *junk;
|
|
int i;
|
|
|
|
// Blank out new name string, just to be on the safe side....
|
|
for (i = 0; i < NAME_SIZE; i++)
|
|
newName[i] = '\0';
|
|
|
|
if (theName == "") { // No name specified, so get one from the user
|
|
cout << "Enter name: ";
|
|
junk = fgets(newName, NAME_SIZE / 2, stdin);
|
|
|
|
// Input is likely to include a newline, so remove it....
|
|
i = strlen(newName);
|
|
if (newName[i - 1] == '\n')
|
|
newName[i - 1] = '\0';
|
|
} else {
|
|
strcpy(newName, theName.substr(0, NAME_SIZE / 2).c_str());
|
|
} // if
|
|
|
|
// Copy the C-style ASCII string from newName into a form that the GPT
|
|
// table will accept....
|
|
for (i = 0; i < NAME_SIZE; i++) {
|
|
if ((i % 2) == 0) {
|
|
name[i] = newName[(i / 2)];
|
|
} else {
|
|
name[i] = '\0';
|
|
} // if/else
|
|
} // for
|
|
} // GPTPart::SetName()
|
|
|
|
/***********************************
|
|
* Non-class but related functions *
|
|
***********************************/
|
|
|
|
// Recursive quick sort algorithm for GPT partitions. Note that if there
|
|
// are any empties in the specified range, they'll be sorted to the
|
|
// start, resulting in a sorted set of partitions that begins with
|
|
// partition 2, 3, or higher.
|
|
void QuickSortGPT(GPTPart* partitions, int start, int finish) {
|
|
uint64_t starterValue; // starting location of median partition
|
|
int left, right;
|
|
GPTPart temp;
|
|
|
|
left = start;
|
|
right = finish;
|
|
starterValue = partitions[(start + finish) / 2].GetFirstLBA();
|
|
do {
|
|
while (partitions[left].GetFirstLBA() < starterValue)
|
|
left++;
|
|
while (partitions[right].GetFirstLBA() > starterValue)
|
|
right--;
|
|
if (left <= right) {
|
|
temp = partitions[left];
|
|
partitions[left] = partitions[right];
|
|
partitions[right] = temp;
|
|
left++;
|
|
right--;
|
|
} // if
|
|
} while (left <= right);
|
|
if (start < right) QuickSortGPT(partitions, start, right);
|
|
if (finish > left) QuickSortGPT(partitions, left, finish);
|
|
} // QuickSortGPT()
|