Merge changes I71708114,Ice92a8ea,I300b6565 into qt-dev
* changes: Fix bug in random. [libc++] Move __clamp_to_integral to <cmath>, and harden against min()/max() macros [libc++] Add `__truncating_cast` for safely casting float types to integers
This commit is contained in:
committed by
Android (Google) Code Review
commit
0540b9fc0b
@@ -304,11 +304,15 @@ long double truncl(long double x);
|
||||
#include <__config>
|
||||
#include <math.h>
|
||||
#include <version>
|
||||
#include <type_traits>
|
||||
|
||||
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
|
||||
#pragma GCC system_header
|
||||
#endif
|
||||
|
||||
_LIBCPP_PUSH_MACROS
|
||||
#include <__undef_macros>
|
||||
|
||||
_LIBCPP_BEGIN_NAMESPACE_STD
|
||||
|
||||
using ::signbit;
|
||||
@@ -607,6 +611,38 @@ __libcpp_isfinite_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
||||
return isfinite(__lcpp_x);
|
||||
}
|
||||
|
||||
template <class _IntT, class _FloatT,
|
||||
bool _FloatBigger = (numeric_limits<_FloatT>::digits > numeric_limits<_IntT>::digits),
|
||||
int _Bits = (numeric_limits<_IntT>::digits - numeric_limits<_FloatT>::digits)>
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
_LIBCPP_CONSTEXPR _IntT __max_representable_int_for_float() _NOEXCEPT {
|
||||
static_assert(is_floating_point<_FloatT>::value, "must be a floating point type");
|
||||
static_assert(is_integral<_IntT>::value, "must be an integral type");
|
||||
static_assert(numeric_limits<_FloatT>::radix == 2, "FloatT has incorrect radix");
|
||||
static_assert(is_same<_FloatT, float>::value || is_same<_FloatT, double>::value
|
||||
|| is_same<_FloatT,long double>::value, "unsupported floating point type");
|
||||
return _FloatBigger ? numeric_limits<_IntT>::max() : (numeric_limits<_IntT>::max() >> _Bits << _Bits);
|
||||
}
|
||||
|
||||
// Convert a floating point number to the specified integral type after
|
||||
// clamping to the integral types representable range.
|
||||
//
|
||||
// The behavior is undefined if `__r` is NaN.
|
||||
template <class _IntT, class _RealT>
|
||||
_LIBCPP_INLINE_VISIBILITY
|
||||
_IntT __clamp_to_integral(_RealT __r) _NOEXCEPT {
|
||||
using _Lim = std::numeric_limits<_IntT>;
|
||||
const _IntT _MaxVal = std::__max_representable_int_for_float<_IntT, _RealT>();
|
||||
if (__r >= ::nextafter(static_cast<_RealT>(_MaxVal), INFINITY)) {
|
||||
return _Lim::max();
|
||||
} else if (__r <= _Lim::lowest()) {
|
||||
return _Lim::min();
|
||||
}
|
||||
return static_cast<_IntT>(__r);
|
||||
}
|
||||
|
||||
_LIBCPP_END_NAMESPACE_STD
|
||||
|
||||
_LIBCPP_POP_MACROS
|
||||
|
||||
#endif // _LIBCPP_CMATH
|
||||
|
||||
@@ -4593,7 +4593,10 @@ public:
|
||||
|
||||
template<class _IntType>
|
||||
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
||||
: __mean_(__mean)
|
||||
// According to the standard `inf` is a valid input, but it causes the
|
||||
// distribution to hang, so we replace it with the maximum representable
|
||||
// mean.
|
||||
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
|
||||
{
|
||||
if (__mean_ < 10)
|
||||
{
|
||||
@@ -4611,7 +4614,7 @@ poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
||||
{
|
||||
__s_ = _VSTD::sqrt(__mean_);
|
||||
__d_ = 6 * __mean_ * __mean_;
|
||||
__l_ = static_cast<result_type>(__mean_ - 1.1484);
|
||||
__l_ = std::trunc(__mean_ - 1.1484);
|
||||
__omega_ = .3989423 / __s_;
|
||||
double __b1_ = .4166667E-1 / __mean_;
|
||||
double __b2_ = .3 * __b1_ * __b1_;
|
||||
@@ -4628,12 +4631,12 @@ template<class _URNG>
|
||||
_IntType
|
||||
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
||||
{
|
||||
result_type __x;
|
||||
double __tx;
|
||||
uniform_real_distribution<double> __urd;
|
||||
if (__pr.__mean_ < 10)
|
||||
{
|
||||
__x = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__x)
|
||||
__tx = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
||||
__p *= __urd(__urng);
|
||||
}
|
||||
else
|
||||
@@ -4643,19 +4646,19 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
||||
double __u;
|
||||
if (__g > 0)
|
||||
{
|
||||
__x = static_cast<result_type>(__g);
|
||||
if (__x >= __pr.__l_)
|
||||
return __x;
|
||||
__difmuk = __pr.__mean_ - __x;
|
||||
__tx = std::trunc(__g);
|
||||
if (__tx >= __pr.__l_)
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__u = __urd(__urng);
|
||||
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
||||
return __x;
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
exponential_distribution<double> __edist;
|
||||
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
||||
{
|
||||
double __e;
|
||||
if (__using_exp_dist || __g < 0)
|
||||
if (__using_exp_dist || __g <= 0)
|
||||
{
|
||||
double __t;
|
||||
do
|
||||
@@ -4665,31 +4668,31 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
||||
__u += __u - 1;
|
||||
__t = 1.8 + (__u < 0 ? -__e : __e);
|
||||
} while (__t <= -.6744);
|
||||
__x = __pr.__mean_ + __pr.__s_ * __t;
|
||||
__difmuk = __pr.__mean_ - __x;
|
||||
__tx = std::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__using_exp_dist = true;
|
||||
}
|
||||
double __px;
|
||||
double __py;
|
||||
if (__x < 10)
|
||||
if (__tx < 10 && __tx >= 0)
|
||||
{
|
||||
const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
||||
40320, 362880};
|
||||
__px = -__pr.__mean_;
|
||||
__py = _VSTD::pow(__pr.__mean_, (double)__x) / __fac[__x];
|
||||
__py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
||||
}
|
||||
else
|
||||
{
|
||||
double __del = .8333333E-1 / __x;
|
||||
double __del = .8333333E-1 / __tx;
|
||||
__del -= 4.8 * __del * __del * __del;
|
||||
double __v = __difmuk / __x;
|
||||
double __v = __difmuk / __tx;
|
||||
if (_VSTD::abs(__v) > 0.25)
|
||||
__px = __x * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||
__px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||
else
|
||||
__px = __x * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||
__px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
||||
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
||||
__py = .3989423 / _VSTD::sqrt(__x);
|
||||
__py = .3989423 / _VSTD::sqrt(__tx);
|
||||
}
|
||||
double __r = (0.5 - __difmuk) / __pr.__s_;
|
||||
double __r2 = __r * __r;
|
||||
@@ -4709,7 +4712,7 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
||||
}
|
||||
}
|
||||
}
|
||||
return __x;
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _IntType>
|
||||
|
||||
19
test/libcxx/numerics/c.math/undef_min_max.pass.cpp
Normal file
19
test/libcxx/numerics/c.math/undef_min_max.pass.cpp
Normal file
@@ -0,0 +1,19 @@
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
#pragma GCC diagnostic ignored "-W#warnings"
|
||||
#endif
|
||||
|
||||
#define min THIS IS A NASTY MACRO!
|
||||
#define max THIS IS A NASTY MACRO!
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "test_macros.h"
|
||||
|
||||
int main(int, char**) { return 0; }
|
||||
90
test/libcxx/numerics/clamp_to_integral.pass.cpp
Normal file
90
test/libcxx/numerics/clamp_to_integral.pass.cpp
Normal file
@@ -0,0 +1,90 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// __clamp_to_integral<IntT>(RealT)
|
||||
|
||||
// Test the conversion function that truncates floating point types to the
|
||||
// closest representable value for the specified integer type, or
|
||||
// numeric_limits<IntT>::max()/min() if the value isn't representable.
|
||||
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
template <class IntT>
|
||||
void test() {
|
||||
typedef std::numeric_limits<IntT> Lim;
|
||||
const bool MaxIsRepresentable = sizeof(IntT) < 8;
|
||||
const bool IsSigned = std::is_signed<IntT>::value;
|
||||
struct TestCase {
|
||||
double Input;
|
||||
IntT Expect;
|
||||
bool IsRepresentable;
|
||||
} TestCases[] = {
|
||||
{0, 0, true},
|
||||
{1, 1, true},
|
||||
{IsSigned ? static_cast<IntT>(-1) : 0,
|
||||
IsSigned ? static_cast<IntT>(-1) : 0, true},
|
||||
{Lim::lowest(), Lim::lowest(), true},
|
||||
{static_cast<double>(Lim::max()), Lim::max(), MaxIsRepresentable},
|
||||
{static_cast<double>(Lim::max()) + 1, Lim::max(), false},
|
||||
{static_cast<double>(Lim::max()) + 1024, Lim::max(), false},
|
||||
{nextafter(static_cast<double>(Lim::max()), INFINITY), Lim::max(), false},
|
||||
};
|
||||
for (TestCase TC : TestCases) {
|
||||
auto res = std::__clamp_to_integral<IntT>(TC.Input);
|
||||
assert(res == TC.Expect);
|
||||
if (TC.IsRepresentable) {
|
||||
auto other = static_cast<IntT>(std::trunc(TC.Input));
|
||||
assert(res == other);
|
||||
} else
|
||||
assert(res == Lim::min() || res == Lim::max());
|
||||
}
|
||||
}
|
||||
|
||||
template <class IntT>
|
||||
void test_float() {
|
||||
typedef std::numeric_limits<IntT> Lim;
|
||||
const bool MaxIsRepresentable = sizeof(IntT) < 4;
|
||||
((void)MaxIsRepresentable);
|
||||
const bool IsSigned = std::is_signed<IntT>::value;
|
||||
struct TestCase {
|
||||
float Input;
|
||||
IntT Expect;
|
||||
bool IsRepresentable;
|
||||
} TestCases[] = {
|
||||
{0, 0, true},
|
||||
{1, 1, true},
|
||||
{IsSigned ? static_cast<IntT>(-1) : 0,
|
||||
IsSigned ? static_cast<IntT>(-1) : 0, true},
|
||||
{Lim::lowest(), Lim::lowest(), true},
|
||||
{static_cast<float>(Lim::max()), Lim::max(), MaxIsRepresentable },
|
||||
{nextafter(static_cast<float>(Lim::max()), INFINITY), Lim::max(), false},
|
||||
};
|
||||
for (TestCase TC : TestCases) {
|
||||
auto res = std::__clamp_to_integral<IntT>(TC.Input);
|
||||
assert(res == TC.Expect);
|
||||
if (TC.IsRepresentable) {
|
||||
auto other = static_cast<IntT>(std::trunc(TC.Input));
|
||||
assert(res == other);
|
||||
} else
|
||||
assert(res == Lim::min() || res == Lim::max());
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
test<short>();
|
||||
test<unsigned short>();
|
||||
test<int>();
|
||||
test<unsigned>();
|
||||
test<long long>();
|
||||
test<unsigned long long>();
|
||||
test_float<short>();
|
||||
test_float<int>();
|
||||
test_float<long long>();
|
||||
}
|
||||
@@ -29,6 +29,20 @@ sqr(T x)
|
||||
return x * x;
|
||||
}
|
||||
|
||||
struct Eng : std::mt19937 {
|
||||
using Base = std::mt19937;
|
||||
using Base::Base;
|
||||
};
|
||||
|
||||
void test_small_inputs() {
|
||||
Eng engine;
|
||||
std::geometric_distribution<std::int16_t> distribution(5.45361e-311);
|
||||
for (auto i=0; i < 1000; ++i) {
|
||||
volatile auto res = distribution(engine);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
@@ -295,4 +309,5 @@ int main()
|
||||
test4();
|
||||
test5();
|
||||
test6();
|
||||
test_small_inputs();
|
||||
}
|
||||
|
||||
@@ -29,6 +29,68 @@ sqr(T x)
|
||||
return x * x;
|
||||
}
|
||||
|
||||
void test_bad_ranges() {
|
||||
// Test cases where the mean is around the largest representable integer for
|
||||
// `result_type`. These cases don't generate valid poisson distributions, but
|
||||
// at least they don't blow up.
|
||||
std::mt19937 eng;
|
||||
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(32710.9);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<std::int16_t>::max());
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(
|
||||
static_cast<double>(std::numeric_limits<std::int16_t>::max()) + 10);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(
|
||||
static_cast<double>(std::numeric_limits<std::int16_t>::max()) * 2);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<double>::infinity());
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(0);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||
std::poisson_distribution<std::int16_t> distribution(-100);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
@@ -148,4 +210,6 @@ int main()
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
|
||||
test_bad_ranges();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user