Update in-tree Google Benchmark to current ToT.

I've put some work into the Google Benchmark library in order to make it easier
to benchmark libc++. These changes have already been upstreamed into
Google Benchmark and this patch applies the changes to the in-tree version.

The main improvement in the addition of a 'compare_bench.py' script which
makes it very easy to compare benchmarks. For example to compare the native
STL to libc++ you would run:

`$ compare_bench.py ./util_smartptr.native.out ./util_smartptr.libcxx.out`

And the output would look like:

RUNNING: ./util_smartptr.native.out
Benchmark                          Time           CPU Iterations
----------------------------------------------------------------
BM_SharedPtrCreateDestroy         62 ns         62 ns   10937500
BM_SharedPtrIncDecRef             31 ns         31 ns   23972603
BM_WeakPtrIncDecRef               28 ns         28 ns   23648649
RUNNING: ./util_smartptr.libcxx.out
Benchmark                          Time           CPU Iterations
----------------------------------------------------------------
BM_SharedPtrCreateDestroy         46 ns         46 ns   14957265
BM_SharedPtrIncDecRef             31 ns         31 ns   22435897
BM_WeakPtrIncDecRef               34 ns         34 ns   21084337
Comparing ./util_smartptr.native.out to ./util_smartptr.libcxx.out
Benchmark                          Time           CPU
-----------------------------------------------------
BM_SharedPtrCreateDestroy         -0.26         -0.26
BM_SharedPtrIncDecRef             +0.00         +0.00
BM_WeakPtrIncDecRef               +0.21         +0.21

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@278147 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier
2016-08-09 18:56:48 +00:00
parent 1fceb5e53d
commit 30b48cb1b3
33 changed files with 1103 additions and 291 deletions

View File

@@ -87,7 +87,12 @@ macro(add_benchmark_test name source_file)
add_executable(${libcxx_target} EXCLUDE_FROM_ALL ${source_file})
add_dependencies(${libcxx_target} cxx google-benchmark-libcxx)
add_dependencies(libcxx-benchmarks ${libcxx_target})
target_link_libraries(${libcxx_target} cxx -lbenchmark)
if (LIBCXX_ENABLE_SHARED)
target_link_libraries(${libcxx_target} cxx_shared)
else()
target_link_libraries(${libcxx_target} cxx_static)
endif()
target_link_libraries(${libcxx_target} -lbenchmark)
set_target_properties(${libcxx_target}
PROPERTIES
OUTPUT_NAME "${name}.libcxx.out"

View File

@@ -10,7 +10,7 @@ namespace ContainerBenchmarks {
template <class Container, class GenInputs>
void BM_ConstructIterIter(benchmark::State& st, Container, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.end();
benchmark::DoNotOptimize(&in);
while (st.KeepRunning()) {
@@ -21,7 +21,7 @@ void BM_ConstructIterIter(benchmark::State& st, Container, GenInputs gen) {
template <class Container, class GenInputs>
void BM_InsertValue(benchmark::State& st, Container c, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.end();
while (st.KeepRunning()) {
c.clear();
@@ -34,7 +34,7 @@ void BM_InsertValue(benchmark::State& st, Container c, GenInputs gen) {
template <class Container, class GenInputs>
void BM_InsertValueRehash(benchmark::State& st, Container c, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.end();
while (st.KeepRunning()) {
c.clear();
@@ -49,7 +49,7 @@ void BM_InsertValueRehash(benchmark::State& st, Container c, GenInputs gen) {
template <class Container, class GenInputs>
void BM_InsertDuplicate(benchmark::State& st, Container c, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.end();
c.insert(in.begin(), in.end());
benchmark::DoNotOptimize(&c);
@@ -65,7 +65,7 @@ void BM_InsertDuplicate(benchmark::State& st, Container c, GenInputs gen) {
template <class Container, class GenInputs>
void BM_EmplaceDuplicate(benchmark::State& st, Container c, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.end();
c.insert(in.begin(), in.end());
benchmark::DoNotOptimize(&c);
@@ -80,7 +80,7 @@ void BM_EmplaceDuplicate(benchmark::State& st, Container c, GenInputs gen) {
template <class Container, class GenInputs>
static void BM_Find(benchmark::State& st, Container c, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
c.insert(in.begin(), in.end());
benchmark::DoNotOptimize(&(*c.begin()));
const auto end = in.data() + in.size();
@@ -95,7 +95,7 @@ static void BM_Find(benchmark::State& st, Container c, GenInputs gen) {
template <class Container, class GenInputs>
static void BM_FindRehash(benchmark::State& st, Container c, GenInputs gen) {
c.rehash(8);
auto in = gen(st.range_x());
auto in = gen(st.range(0));
c.insert(in.begin(), in.end());
benchmark::DoNotOptimize(&(*c.begin()));
const auto end = in.data() + in.size();

View File

@@ -10,7 +10,7 @@ constexpr std::size_t TestNumInputs = 1024;
template <class GenInputs>
void BM_Sort(benchmark::State& st, GenInputs gen) {
using ValueType = typename decltype(gen(0))::value_type;
const auto in = gen(st.range_x());
const auto in = gen(st.range(0));
std::vector<ValueType> inputs[5];
auto reset_inputs = [&]() {
for (auto& C : inputs) {

View File

@@ -109,7 +109,7 @@ struct UInt64Hash2 {
template <class HashFn, class GenInputs>
void BM_Hash(benchmark::State& st, HashFn fn, GenInputs gen) {
auto in = gen(st.range_x());
auto in = gen(st.range(0));
const auto end = in.data() + in.size();
std::size_t last_hash = 0;
benchmark::DoNotOptimize(&last_hash);

View File

@@ -13,6 +13,7 @@ Arne Beer <arne@twobeer.de>
Christopher Seymour <chris.j.seymour@hotmail.com>
David Coeurjolly <david.coeurjolly@liris.cnrs.fr>
Dominic Hamon <dma@stripysock.com>
Eric Fiselier <eric@efcs.ca>
Eugene Zhuk <eugene.zhuk@gmail.com>
Evgeny Safronov <division494@gmail.com>
Felix Homann <linuxaudio@showlabor.de>

View File

@@ -40,13 +40,13 @@ measuring the speed of `memcpy()` calls of different lengths:
```c++
static void BM_memcpy(benchmark::State& state) {
char* src = new char[state.range_x()];
char* dst = new char[state.range_x()];
memset(src, 'x', state.range_x());
char* src = new char[state.range(0)];
char* dst = new char[state.range(0)];
memset(src, 'x', state.range(0));
while (state.KeepRunning())
memcpy(dst, src, state.range_x());
memcpy(dst, src, state.range(0));
state.SetBytesProcessed(int64_t(state.iterations()) *
int64_t(state.range_x()));
int64_t(state.range(0)));
delete[] src;
delete[] dst;
}
@@ -70,7 +70,7 @@ BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
```
Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
You might have a benchmark that depends on two inputs. For example, the
You might have a benchmark that depends on two or more inputs. For example, the
following code defines a family of benchmarks for measuring the speed of set
insertion.
@@ -78,21 +78,21 @@ insertion.
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range_x());
std::set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(RandomNumber());
}
}
BENCHMARK(BM_SetInsert)
->ArgPair(1<<10, 1)
->ArgPair(1<<10, 8)
->ArgPair(1<<10, 64)
->ArgPair(1<<10, 512)
->ArgPair(8<<10, 1)
->ArgPair(8<<10, 8)
->ArgPair(8<<10, 64)
->ArgPair(8<<10, 512);
->Args({1<<10, 1})
->Args({1<<10, 8})
->Args({1<<10, 64})
->Args({1<<10, 512})
->Args({8<<10, 1})
->Args({8<<10, 8})
->Args({8<<10, 64})
->Args({8<<10, 512});
```
The preceding code is quite repetitive, and can be replaced with the following
@@ -101,7 +101,7 @@ product of the two specified ranges and will generate a benchmark for each such
pair.
```c++
BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
```
For more complex patterns of inputs, passing a custom function to `Apply` allows
@@ -113,7 +113,7 @@ and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) {
for (int i = 0; i <= 10; ++i)
for (int j = 32; j <= 1024*1024; j *= 8)
b->ArgPair(i, j);
b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
```
@@ -125,12 +125,12 @@ running time and the normalized root-mean square error of string comparison.
```c++
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-');
std::string s1(state.range(0), '-');
std::string s2(state.range(0), '-');
while (state.KeepRunning()) {
benchmark::DoNotOptimize(s1.compare(s2));
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_StringCompare)
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
@@ -162,14 +162,14 @@ template <class Q> int BM_Sequential(benchmark::State& state) {
Q q;
typename Q::value_type v;
while (state.KeepRunning()) {
for (int i = state.range_x(); i--; )
for (int i = state.range(0); i--; )
q.push(v);
for (int e = state.range_x(); e--; )
for (int e = state.range(0); e--; )
q.Wait(&v);
}
// actually messages, not bytes:
state.SetBytesProcessed(
static_cast<int64_t>(state.iterations())*state.range_x());
static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
```
@@ -206,6 +206,34 @@ BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
Note that elements of `...args` may refer to global variables. Users should
avoid modifying global state inside of a benchmark.
## Using RegisterBenchmark(name, fn, args...)
The `RegisterBenchmark(name, func, args...)` function provides an alternative
way to create and register benchmarks.
`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
pointer to a new benchmark with the specified `name` that invokes
`func(st, args...)` where `st` is a `benchmark::State` object.
Unlike the `BENCHMARK` registration macros, which can only be used at the global
scope, the `RegisterBenchmark` can be called anywhere. This allows for
benchmark tests to be registered programmatically.
Additionally `RegisterBenchmark` allows any callable object to be registered
as a benchmark. Including capturing lambdas and function objects. This
allows the creation
For Example:
```c++
auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
int main(int argc, char** argv) {
for (auto& test_input : { /* ... */ })
benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
benchmark::Initialize(&argc, argv);
benchmark::RunSpecifiedBenchmarks();
}
```
### Multithreaded benchmarks
In a multithreaded test (benchmark invoked by multiple threads simultaneously),
it is guaranteed that none of the threads will start until all have called
@@ -256,7 +284,7 @@ can be reported back with `SetIterationTime`.
```c++
static void BM_ManualTiming(benchmark::State& state) {
int microseconds = state.range_x();
int microseconds = state.range(0);
std::chrono::duration<double, std::micro> sleep_duration {
static_cast<double>(microseconds)
};
@@ -427,10 +455,10 @@ static void BM_test(benchmark::State& state) {
## Output Formats
The library supports multiple output formats. Use the
`--benchmark_format=<tabular|json|csv>` flag to set the format type. `tabular` is
the default format.
`--benchmark_format=<console|json|csv>` flag to set the format type. `console`
is the default format.
The Tabular format is intended to be a human readable format. By default
The Console format is intended to be a human readable format. By default
the format generates color output. Context is output on stderr and the
tabular data on stdout. Example tabular output looks like:
```
@@ -493,6 +521,12 @@ name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
```
## Output Files
The library supports writing the output of the benchmark to a file specified
by `--benchmark_out=<filename>`. The format of the output can be specified
using `--benchmark_out_format={json|console|csv}`. Specifying
`--benchmark_out` does not suppress the console output.
## Debug vs Release
By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
@@ -507,4 +541,22 @@ cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
```
## Linking against the library
When using gcc, it is necessary to link against pthread to avoid runtime exceptions. This is due to how gcc implements std::thread. See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
This is due to how gcc implements std::thread.
See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
## Compiler Support
Google Benchmark uses C++11 when building the library. As such we require
a modern C++ toolchain, both compiler and standard library.
The following minimum versions are strongly recommended build the library:
* GCC 4.8
* Clang 3.4
* Visual Studio 2013
Anything older *may* work.
Note: Using the library and its headers in C++03 is supported. C++11 is only
required to build the library.

View File

@@ -38,12 +38,12 @@ int main(int argc, char** argv) {
// of memcpy() calls of different lengths:
static void BM_memcpy(benchmark::State& state) {
char* src = new char[state.range_x()]; char* dst = new char[state.range_x()];
memset(src, 'x', state.range_x());
char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
memset(src, 'x', state.range(0));
while (state.KeepRunning())
memcpy(dst, src, state.range_x());
memcpy(dst, src, state.range(0));
state.SetBytesProcessed(int64_t(state.iterations()) *
int64_t(state.range_x()));
int64_t(state.range(0)));
delete[] src; delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
@@ -60,27 +60,27 @@ BENCHMARK(BM_memcpy)->Range(8, 8<<10);
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
set<int> data = ConstructRandomSet(state.range_x());
set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(RandomNumber());
}
}
BENCHMARK(BM_SetInsert)
->ArgPair(1<<10, 1)
->ArgPair(1<<10, 8)
->ArgPair(1<<10, 64)
->ArgPair(1<<10, 512)
->ArgPair(8<<10, 1)
->ArgPair(8<<10, 8)
->ArgPair(8<<10, 64)
->ArgPair(8<<10, 512);
->Args({1<<10, 1})
->Args({1<<10, 8})
->Args({1<<10, 64})
->Args({1<<10, 512})
->Args({8<<10, 1})
->Args({8<<10, 8})
->Args({8<<10, 64})
->Args({8<<10, 512});
// The preceding code is quite repetitive, and can be replaced with
// the following short-hand. The following macro will pick a few
// appropriate arguments in the product of the two specified ranges
// and will generate a microbenchmark for each such pair.
BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
// For more complex patterns of inputs, passing a custom function
// to Apply allows programmatic specification of an
@@ -90,7 +90,7 @@ BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
static void CustomArguments(benchmark::internal::Benchmark* b) {
for (int i = 0; i <= 10; ++i)
for (int j = 32; j <= 1024*1024; j *= 8)
b->ArgPair(i, j);
b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
@@ -101,14 +101,14 @@ template <class Q> int BM_Sequential(benchmark::State& state) {
Q q;
typename Q::value_type v;
while (state.KeepRunning()) {
for (int i = state.range_x(); i--; )
for (int i = state.range(0); i--; )
q.push(v);
for (int e = state.range_x(); e--; )
for (int e = state.range(0); e--; )
q.Wait(&v);
}
// actually messages, not bytes:
state.SetBytesProcessed(
static_cast<int64_t>(state.iterations())*state.range_x());
static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
@@ -153,8 +153,15 @@ BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "macros.h"
#if defined(BENCHMARK_HAS_CXX11)
#include <type_traits>
#include <utility>
#endif
namespace benchmark {
class BenchmarkReporter;
@@ -165,11 +172,16 @@ void Initialize(int* argc, char** argv);
// of each matching benchmark. Otherwise run each matching benchmark and
// report the results.
//
// The second overload reports the results using the specified 'reporter'.
// The second and third overload use the specified 'console_reporter' and
// 'file_reporter' respectively. 'file_reporter' will write to the file specified
// by '--benchmark_output'. If '--benchmark_output' is not given the
// 'file_reporter' is ignored.
//
// RETURNS: The number of matching benchmarks.
size_t RunSpecifiedBenchmarks();
size_t RunSpecifiedBenchmarks(BenchmarkReporter* reporter);
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter);
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter,
BenchmarkReporter* file_reporter);
// If this routine is called, peak memory allocation past this point in the
@@ -258,7 +270,7 @@ typedef double(BigOFunc)(int);
// benchmark to use.
class State {
public:
State(size_t max_iters, bool has_x, int x, bool has_y, int y,
State(size_t max_iters, const std::vector<int>& ranges,
int thread_i, int n_threads);
// Returns true if the benchmark should continue through another iteration.
@@ -367,7 +379,7 @@ public:
}
BENCHMARK_ALWAYS_INLINE
size_t complexity_length_n() {
int complexity_length_n() {
return complexity_n_;
}
@@ -413,17 +425,9 @@ public:
// Range arguments for this run. CHECKs if the argument has been set.
BENCHMARK_ALWAYS_INLINE
int range_x() const {
assert(has_range_x_);
((void)has_range_x_); // Prevent unused warning.
return range_x_;
}
BENCHMARK_ALWAYS_INLINE
int range_y() const {
assert(has_range_y_);
((void)has_range_y_); // Prevent unused warning.
return range_y_;
int range(std::size_t pos) const {
assert(range_.size() > pos);
return range_[pos];
}
BENCHMARK_ALWAYS_INLINE
@@ -434,11 +438,7 @@ private:
bool finished_;
size_t total_iterations_;
bool has_range_x_;
int range_x_;
bool has_range_y_;
int range_y_;
std::vector<int> range_;
size_t bytes_processed_;
size_t items_processed_;
@@ -489,24 +489,22 @@ public:
// REQUIRES: The function passed to the constructor must accept an arg1.
Benchmark* Range(int start, int limit);
// Run this benchmark once for every value in the range [start..limit]
// Run this benchmark once for all values in the range [start..limit] with specific step
// REQUIRES: The function passed to the constructor must accept an arg1.
Benchmark* DenseRange(int start, int limit);
Benchmark* DenseRange(int start, int limit, int step = 1);
// Run this benchmark once with "x,y" as the extra arguments passed
// Run this benchmark once with "args" as the extra arguments passed
// to the function.
// REQUIRES: The function passed to the constructor must accept arg1,arg2.
Benchmark* ArgPair(int x, int y);
// REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
Benchmark* Args(const std::vector<int>& args);
// Pick a set of values A from the range [lo1..hi1] and a set
// of values B from the range [lo2..hi2]. Run the benchmark for
// every pair of values in the cartesian product of A and B
// (i.e., for all combinations of the values in A and B).
// REQUIRES: The function passed to the constructor must accept arg1,arg2.
Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2);
// Run this benchmark once for a number of values picked from the
// ranges [start..limit]. (starts and limits are always picked.)
// REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
Benchmark* Ranges(const std::vector<std::pair<int, int> >& ranges);
// Pass this benchmark object to *func, which can customize
// the benchmark by calling various methods like Arg, ArgPair,
// the benchmark by calling various methods like Arg, Args,
// Threads, etc.
Benchmark* Apply(void (*func)(Benchmark* benchmark));
@@ -587,6 +585,20 @@ private:
Benchmark& operator=(Benchmark const&);
};
} // namespace internal
// Create and register a benchmark with the specified 'name' that invokes
// the specified functor 'fn'.
//
// RETURNS: A pointer to the registered benchmark.
internal::Benchmark* RegisterBenchmark(const char* name, internal::Function* fn);
#if defined(BENCHMARK_HAS_CXX11)
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn);
#endif
namespace internal {
// The class used to hold all Benchmarks created from static function.
// (ie those created using the BENCHMARK(...) macros.
class FunctionBenchmark : public Benchmark {
@@ -600,8 +612,57 @@ private:
Function* func_;
};
#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
class LambdaBenchmark : public Benchmark {
public:
virtual void Run(State& st) { lambda_(st); }
private:
template <class OLambda>
LambdaBenchmark(const char* name, OLambda&& lam)
: Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}
LambdaBenchmark(LambdaBenchmark const&) = delete;
private:
template <class Lam>
friend Benchmark* ::benchmark::RegisterBenchmark(const char*, Lam&&);
Lambda lambda_;
};
#endif
} // end namespace internal
inline internal::Benchmark*
RegisterBenchmark(const char* name, internal::Function* fn) {
return internal::RegisterBenchmarkInternal(
::new internal::FunctionBenchmark(name, fn));
}
#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn) {
using BenchType = internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
return internal::RegisterBenchmarkInternal(
::new BenchType(name, std::forward<Lambda>(fn)));
}
#endif
#if defined(BENCHMARK_HAS_CXX11) && \
(!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
template <class Lambda, class ...Args>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn,
Args&&... args) {
return benchmark::RegisterBenchmark(name,
[=](benchmark::State& st) { fn(st, args...); });
}
#else
#define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
#endif
// The base class for all fixture tests.
class Fixture: public internal::Benchmark {
public:
@@ -652,11 +713,11 @@ protected:
// Old-style macros
#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->ArgPair((a1), (a2))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
BENCHMARK(n)->RangePair((l1), (h1), (l2), (h2))
BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})
#if __cplusplus >= 201103L

View File

@@ -14,7 +14,11 @@
#ifndef BENCHMARK_MACROS_H_
#define BENCHMARK_MACROS_H_
#if __cplusplus < 201103L
#if __cplusplus >= 201103L
#define BENCHMARK_HAS_CXX11
#endif
#ifndef BENCHMARK_HAS_CXX11
# define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
TypeName& operator=(const TypeName&)
@@ -53,4 +57,8 @@
# define BENCHMARK_BUILTIN_EXPECT(x, y) x
#endif
#if defined(__GNUC__) && !defined(__clang__)
#define BENCHMARK_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif
#endif // BENCHMARK_MACROS_H_

View File

@@ -157,13 +157,22 @@ class BenchmarkReporter {
// default reporter used by RunSpecifiedBenchmarks().
class ConsoleReporter : public BenchmarkReporter {
public:
enum OutputOptions {
OO_None,
OO_Color
};
explicit ConsoleReporter(OutputOptions color_output = OO_Color)
: color_output_(color_output == OO_Color) {}
virtual bool ReportContext(const Context& context);
virtual void ReportRuns(const std::vector<Run>& reports);
protected:
virtual void PrintRunData(const Run& report);
size_t name_field_width_;
private:
bool color_output_;
};
class JSONReporter : public BenchmarkReporter {

View File

@@ -28,6 +28,7 @@
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <fstream>
#include <memory>
#include <thread>
@@ -69,6 +70,12 @@ DEFINE_string(benchmark_format, "console",
"The format to use for console output. Valid values are "
"'console', 'json', or 'csv'.");
DEFINE_string(benchmark_out_format, "json",
"The format to use for file output. Valid values are "
"'console', 'json', or 'csv'.");
DEFINE_string(benchmark_out, "", "The file to write additonal output to");
DEFINE_bool(color_print, true, "Enables colorized logging.");
DEFINE_int32(v, 0, "The level of verbose logging to output");
@@ -308,10 +315,7 @@ namespace internal {
struct Benchmark::Instance {
std::string name;
Benchmark* benchmark;
bool has_arg1;
int arg1;
bool has_arg2;
int arg2;
std::vector<int> arg;
TimeUnit time_unit;
int range_multiplier;
bool use_real_time;
@@ -354,9 +358,9 @@ public:
void Arg(int x);
void Unit(TimeUnit unit);
void Range(int start, int limit);
void DenseRange(int start, int limit);
void ArgPair(int start, int limit);
void RangePair(int lo1, int hi1, int lo2, int hi2);
void DenseRange(int start, int limit, int step = 1);
void Args(const std::vector<int>& args);
void Ranges(const std::vector<std::pair<int, int>>& ranges);
void RangeMultiplier(int multiplier);
void MinTime(double n);
void Repetitions(int n);
@@ -371,12 +375,13 @@ public:
static void AddRange(std::vector<int>* dst, int lo, int hi, int mult);
int ArgsCnt() const { return args_.empty() ? -1 : static_cast<int>(args_.front().size()); }
private:
friend class BenchmarkFamilies;
std::string name_;
int arg_count_;
std::vector< std::pair<int, int> > args_; // Args for all benchmark runs
std::vector< std::vector<int> > args_; // Args for all benchmark runs
TimeUnit time_unit_;
int range_multiplier_;
double min_time_;
@@ -424,10 +429,10 @@ bool BenchmarkFamilies::FindBenchmarks(
if (!bench_family) continue;
BenchmarkImp* family = bench_family->imp_;
if (family->arg_count_ == -1) {
family->arg_count_ = 0;
family->args_.emplace_back(-1, -1);
if (family->ArgsCnt() == -1) {
family->Args({});
}
for (auto const& args : family->args_) {
const std::vector<int>* thread_counts =
(family->thread_counts_.empty()
@@ -438,10 +443,7 @@ bool BenchmarkFamilies::FindBenchmarks(
Benchmark::Instance instance;
instance.name = family->name_;
instance.benchmark = bench_family.get();
instance.has_arg1 = family->arg_count_ >= 1;
instance.arg1 = args.first;
instance.has_arg2 = family->arg_count_ == 2;
instance.arg2 = args.second;
instance.arg = args;
instance.time_unit = family->time_unit_;
instance.range_multiplier = family->range_multiplier_;
instance.min_time = family->min_time_;
@@ -454,12 +456,10 @@ bool BenchmarkFamilies::FindBenchmarks(
instance.multithreaded = !(family->thread_counts_.empty());
// Add arguments to instance name
if (family->arg_count_ >= 1) {
AppendHumanReadable(instance.arg1, &instance.name);
}
if (family->arg_count_ >= 2) {
AppendHumanReadable(instance.arg2, &instance.name);
for (auto const& arg : args) {
AppendHumanReadable(arg, &instance.name);
}
if (!IsZero(family->min_time_)) {
instance.name += StringPrintF("/min_time:%0.3f", family->min_time_);
}
@@ -488,7 +488,7 @@ bool BenchmarkFamilies::FindBenchmarks(
}
BenchmarkImp::BenchmarkImp(const char* name)
: name_(name), arg_count_(-1), time_unit_(kNanosecond),
: name_(name), time_unit_(kNanosecond),
range_multiplier_(kRangeMultiplier), min_time_(0.0), repetitions_(0),
use_real_time_(false), use_manual_time_(false),
complexity_(oNone) {
@@ -498,9 +498,8 @@ BenchmarkImp::~BenchmarkImp() {
}
void BenchmarkImp::Arg(int x) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
args_.emplace_back(x, -1);
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
args_.push_back({x});
}
void BenchmarkImp::Unit(TimeUnit unit) {
@@ -508,42 +507,54 @@ void BenchmarkImp::Unit(TimeUnit unit) {
}
void BenchmarkImp::Range(int start, int limit) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
std::vector<int> arglist;
AddRange(&arglist, start, limit, range_multiplier_);
for (int i : arglist) {
args_.emplace_back(i, -1);
args_.push_back({i});
}
}
void BenchmarkImp::DenseRange(int start, int limit) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
void BenchmarkImp::DenseRange(int start, int limit, int step) {
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
CHECK_GE(start, 0);
CHECK_LE(start, limit);
for (int arg = start; arg <= limit; arg++) {
args_.emplace_back(arg, -1);
for (int arg = start; arg <= limit; arg+= step) {
args_.push_back({arg});
}
}
void BenchmarkImp::ArgPair(int x, int y) {
CHECK(arg_count_ == -1 || arg_count_ == 2);
arg_count_ = 2;
args_.emplace_back(x, y);
void BenchmarkImp::Args(const std::vector<int>& args)
{
args_.push_back(args);
}
void BenchmarkImp::RangePair(int lo1, int hi1, int lo2, int hi2) {
CHECK(arg_count_ == -1 || arg_count_ == 2);
arg_count_ = 2;
std::vector<int> arglist1, arglist2;
AddRange(&arglist1, lo1, hi1, range_multiplier_);
AddRange(&arglist2, lo2, hi2, range_multiplier_);
void BenchmarkImp::Ranges(const std::vector<std::pair<int, int>>& ranges) {
std::vector<std::vector<int>> arglists(ranges.size());
int total = 1;
for (std::size_t i = 0; i < ranges.size(); i++) {
AddRange(&arglists[i], ranges[i].first, ranges[i].second, range_multiplier_);
total *= arglists[i].size();
}
for (int i : arglist1) {
for (int j : arglist2) {
args_.emplace_back(i, j);
std::vector<std::size_t> ctr(total, 0);
for (int i = 0; i < total; i++) {
std::vector<int> tmp;
for (std::size_t j = 0; j < arglists.size(); j++) {
tmp.push_back(arglists[j][ctr[j]]);
}
args_.push_back(tmp);
for (std::size_t j = 0; j < arglists.size(); j++) {
if (ctr[j] + 1 < arglists[j].size()) {
++ctr[j];
break;
}
ctr[j] = 0;
}
}
}
@@ -641,6 +652,7 @@ Benchmark::Benchmark(Benchmark const& other)
}
Benchmark* Benchmark::Arg(int x) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->Arg(x);
return this;
}
@@ -651,22 +663,27 @@ Benchmark* Benchmark::Unit(TimeUnit unit) {
}
Benchmark* Benchmark::Range(int start, int limit) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->Range(start, limit);
return this;
}
Benchmark* Benchmark::DenseRange(int start, int limit) {
imp_->DenseRange(start, limit);
Benchmark* Benchmark::Ranges(const std::vector<std::pair<int, int>>& ranges)
{
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == static_cast<int>(ranges.size()));
imp_->Ranges(ranges);
return this;
}
Benchmark* Benchmark::ArgPair(int x, int y) {
imp_->ArgPair(x, y);
Benchmark* Benchmark::DenseRange(int start, int limit, int step) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->DenseRange(start, limit, step);
return this;
}
Benchmark* Benchmark::RangePair(int lo1, int hi1, int lo2, int hi2) {
imp_->RangePair(lo1, hi1, lo2, hi2);
Benchmark* Benchmark::Args(const std::vector<int>& args) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == static_cast<int>(args.size()));
imp_->Args(args);
return this;
}
@@ -744,7 +761,7 @@ namespace {
void RunInThread(const benchmark::internal::Benchmark::Instance* b,
size_t iters, int thread_id,
ThreadStats* total) EXCLUDES(GetBenchmarkLock()) {
State st(iters, b->has_arg1, b->arg1, b->has_arg2, b->arg2, thread_id, b->threads);
State st(iters, b->arg, thread_id, b->threads);
b->benchmark->Run(st);
CHECK(st.iterations() == st.max_iterations) <<
"Benchmark returned before State::KeepRunning() returned false!";
@@ -758,14 +775,13 @@ void RunInThread(const benchmark::internal::Benchmark::Instance* b,
timer_manager->Finalize();
}
void RunBenchmark(const benchmark::internal::Benchmark::Instance& b,
BenchmarkReporter* br,
std::vector<BenchmarkReporter::Run>& complexity_reports)
std::vector<BenchmarkReporter::Run>
RunBenchmark(const benchmark::internal::Benchmark::Instance& b,
std::vector<BenchmarkReporter::Run>* complexity_reports)
EXCLUDES(GetBenchmarkLock()) {
std::vector<BenchmarkReporter::Run> reports; // return value
size_t iters = 1;
std::vector<BenchmarkReporter::Run> reports;
std::vector<std::thread> pool;
if (b.multithreaded)
pool.resize(b.threads);
@@ -872,7 +888,7 @@ void RunBenchmark(const benchmark::internal::Benchmark::Instance& b,
report.complexity = b.complexity;
report.complexity_lambda = b.complexity_lambda;
if(report.complexity != oNone)
complexity_reports.push_back(report);
complexity_reports->push_back(report);
}
reports.push_back(report);
@@ -903,27 +919,26 @@ void RunBenchmark(const benchmark::internal::Benchmark::Instance& b,
additional_run_stats.end());
if((b.complexity != oNone) && b.last_benchmark_instance) {
additional_run_stats = ComputeBigO(complexity_reports);
additional_run_stats = ComputeBigO(*complexity_reports);
reports.insert(reports.end(), additional_run_stats.begin(),
additional_run_stats.end());
complexity_reports.clear();
complexity_reports->clear();
}
br->ReportRuns(reports);
if (b.multithreaded) {
for (std::thread& thread : pool)
thread.join();
}
return reports;
}
} // namespace
State::State(size_t max_iters, bool has_x, int x, bool has_y, int y,
State::State(size_t max_iters, const std::vector<int>& ranges,
int thread_i, int n_threads)
: started_(false), finished_(false), total_iterations_(0),
has_range_x_(has_x), range_x_(x),
has_range_y_(has_y), range_y_(y),
range_(ranges),
bytes_processed_(0), items_processed_(0),
complexity_n_(0),
error_occurred_(false),
@@ -975,8 +990,10 @@ namespace internal {
namespace {
void RunMatchingBenchmarks(const std::vector<Benchmark::Instance>& benchmarks,
BenchmarkReporter* reporter) {
CHECK(reporter != nullptr);
BenchmarkReporter* console_reporter,
BenchmarkReporter* file_reporter) {
// Note the file_reporter can be null.
CHECK(console_reporter != nullptr);
// Determine the width of the name field using a minimum width of 10.
bool has_repetitions = FLAGS_benchmark_repetitions > 1;
@@ -1000,23 +1017,30 @@ void RunMatchingBenchmarks(const std::vector<Benchmark::Instance>& benchmarks,
// Keep track of runing times of all instances of current benchmark
std::vector<BenchmarkReporter::Run> complexity_reports;
if (reporter->ReportContext(context)) {
if (console_reporter->ReportContext(context)
&& (!file_reporter || file_reporter->ReportContext(context))) {
for (const auto& benchmark : benchmarks) {
RunBenchmark(benchmark, reporter, complexity_reports);
std::vector<BenchmarkReporter::Run> reports =
RunBenchmark(benchmark, &complexity_reports);
console_reporter->ReportRuns(reports);
if (file_reporter) file_reporter->ReportRuns(reports);
}
}
console_reporter->Finalize();
if (file_reporter) file_reporter->Finalize();
}
std::unique_ptr<BenchmarkReporter> GetDefaultReporter() {
std::unique_ptr<BenchmarkReporter>
CreateReporter(std::string const& name, ConsoleReporter::OutputOptions allow_color) {
typedef std::unique_ptr<BenchmarkReporter> PtrType;
if (FLAGS_benchmark_format == "console") {
return PtrType(new ConsoleReporter);
} else if (FLAGS_benchmark_format == "json") {
if (name == "console") {
return PtrType(new ConsoleReporter(allow_color));
} else if (name == "json") {
return PtrType(new JSONReporter);
} else if (FLAGS_benchmark_format == "csv") {
} else if (name == "csv") {
return PtrType(new CSVReporter);
} else {
std::cerr << "Unexpected format: '" << FLAGS_benchmark_format << "'\n";
std::cerr << "Unexpected format: '" << name << "'\n";
std::exit(1);
}
}
@@ -1025,10 +1049,17 @@ std::unique_ptr<BenchmarkReporter> GetDefaultReporter() {
} // end namespace internal
size_t RunSpecifiedBenchmarks() {
return RunSpecifiedBenchmarks(nullptr);
return RunSpecifiedBenchmarks(nullptr, nullptr);
}
size_t RunSpecifiedBenchmarks(BenchmarkReporter* reporter) {
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter) {
return RunSpecifiedBenchmarks(console_reporter, nullptr);
}
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter,
BenchmarkReporter* file_reporter) {
std::string spec = FLAGS_benchmark_filter;
if (spec.empty() || spec == "all")
spec = "."; // Regexp that matches all benchmarks
@@ -1041,13 +1072,38 @@ size_t RunSpecifiedBenchmarks(BenchmarkReporter* reporter) {
for (auto const& benchmark : benchmarks)
std::cout << benchmark.name << "\n";
} else {
std::unique_ptr<BenchmarkReporter> default_reporter;
if (!reporter) {
default_reporter = internal::GetDefaultReporter();
reporter = default_reporter.get();
// Setup the reporters
std::ofstream output_file;
std::unique_ptr<BenchmarkReporter> default_console_reporter;
std::unique_ptr<BenchmarkReporter> default_file_reporter;
if (!console_reporter) {
auto output_opts = FLAGS_color_print ? ConsoleReporter::OO_Color
: ConsoleReporter::OO_None;
default_console_reporter = internal::CreateReporter(
FLAGS_benchmark_format, output_opts);
console_reporter = default_console_reporter.get();
}
internal::RunMatchingBenchmarks(benchmarks, reporter);
reporter->Finalize();
std::string const& fname = FLAGS_benchmark_out;
if (fname == "" && file_reporter) {
std::cerr << "A custom file reporter was provided but "
"--benchmark_out=<file> was not specified." << std::endl;
std::exit(1);
}
if (fname != "") {
output_file.open(fname);
if (!output_file.is_open()) {
std::cerr << "invalid file name: '" << fname << std::endl;
std::exit(1);
}
if (!file_reporter) {
default_file_reporter = internal::CreateReporter(
FLAGS_benchmark_out_format, ConsoleReporter::OO_None);
file_reporter = default_file_reporter.get();
}
file_reporter->SetOutputStream(&output_file);
file_reporter->SetErrorStream(&output_file);
}
internal::RunMatchingBenchmarks(benchmarks, console_reporter, file_reporter);
}
return benchmarks.size();
}
@@ -1062,6 +1118,8 @@ void PrintUsageAndExit() {
" [--benchmark_min_time=<min_time>]\n"
" [--benchmark_repetitions=<num_repetitions>]\n"
" [--benchmark_format=<console|json|csv>]\n"
" [--benchmark_out=<filename>]\n"
" [--benchmark_out_format=<json|console|csv>]\n"
" [--color_print={true|false}]\n"
" [--v=<verbosity>]\n");
exit(0);
@@ -1081,6 +1139,10 @@ void ParseCommandLineFlags(int* argc, char** argv) {
&FLAGS_benchmark_repetitions) ||
ParseStringFlag(argv[i], "benchmark_format",
&FLAGS_benchmark_format) ||
ParseStringFlag(argv[i], "benchmark_out",
&FLAGS_benchmark_out) ||
ParseStringFlag(argv[i], "benchmark_out_format",
&FLAGS_benchmark_out_format) ||
ParseBoolFlag(argv[i], "color_print",
&FLAGS_color_print) ||
ParseInt32Flag(argv[i], "v", &FLAGS_v)) {
@@ -1092,10 +1154,9 @@ void ParseCommandLineFlags(int* argc, char** argv) {
PrintUsageAndExit();
}
}
if (FLAGS_benchmark_format != "console" &&
FLAGS_benchmark_format != "json" &&
FLAGS_benchmark_format != "csv") {
for (auto const* flag : {&FLAGS_benchmark_format,
&FLAGS_benchmark_out_format})
if (*flag != "console" && *flag != "json" && *flag != "csv") {
PrintUsageAndExit();
}
}

View File

@@ -20,7 +20,6 @@
#include <string>
#include <memory>
#include "commandlineflags.h"
#include "check.h"
#include "internal_macros.h"
@@ -28,8 +27,6 @@
#include <Windows.h>
#endif
DECLARE_bool(color_print);
namespace benchmark {
namespace {
#ifdef BENCHMARK_OS_WINDOWS
@@ -120,14 +117,14 @@ std::string FormatString(const char *msg, ...) {
void ColorPrintf(std::ostream& out, LogColor color, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
if (!FLAGS_color_print) {
out << FormatString(fmt, args);
ColorPrintf(out, color, fmt, args);
va_end(args);
return;
}
void ColorPrintf(std::ostream& out, LogColor color, const char* fmt, va_list args) {
#ifdef BENCHMARK_OS_WINDOWS
((void)out); // suppress unused warning
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
@@ -152,7 +149,6 @@ void ColorPrintf(std::ostream& out, LogColor color, const char* fmt, ...) {
out << FormatString(fmt, args) << "\033[m";
#endif
va_end(args);
}
} // end namespace benchmark

View File

@@ -20,6 +20,7 @@ enum LogColor {
std::string FormatString(const char* msg, va_list args);
std::string FormatString(const char* msg, ...);
void ColorPrintf(std::ostream& out, LogColor color, const char* fmt, va_list args);
void ColorPrintf(std::ostream& out, LogColor color, const char* fmt, ...);
} // end namespace benchmark

View File

@@ -31,9 +31,9 @@ BigOFunc* FittingCurve(BigO complexity) {
case oN:
return [](int n) -> double { return n; };
case oNSquared:
return [](int n) -> double { return n * n; };
return [](int n) -> double { return std::pow(n, 2); };
case oNCubed:
return [](int n) -> double { return n * n * n; };
return [](int n) -> double { return std::pow(n, 3); };
case oLogN:
return [](int n) { return std::log2(n); };
case oNLogN:

View File

@@ -30,8 +30,6 @@
#include "string_util.h"
#include "walltime.h"
DECLARE_bool(color_print);
namespace benchmark {
bool ConsoleReporter::ReportContext(const Context& context) {
@@ -40,10 +38,10 @@ bool ConsoleReporter::ReportContext(const Context& context) {
PrintBasicContext(&GetErrorStream(), context);
#ifdef BENCHMARK_OS_WINDOWS
if (FLAGS_color_print && &std::cout != &GetOutputStream()) {
if (color_output_ && &std::cout != &GetOutputStream()) {
GetErrorStream() << "Color printing is only supported for stdout on windows."
" Disabling color printing\n";
FLAGS_color_print = false;
color_output_ = false;
}
#endif
std::string str = FormatString("%-*s %13s %13s %10s\n",
@@ -59,18 +57,29 @@ void ConsoleReporter::ReportRuns(const std::vector<Run>& reports) {
PrintRunData(run);
}
void ConsoleReporter::PrintRunData(const Run& result) {
auto& Out = GetOutputStream();
static void IgnoreColorPrint(std::ostream& out, LogColor,
const char* fmt, ...)
{
va_list args;
va_start(args, fmt);
out << FormatString(fmt, args);
va_end(args);
}
void ConsoleReporter::PrintRunData(const Run& result) {
typedef void(PrinterFn)(std::ostream&, LogColor, const char*, ...);
auto& Out = GetOutputStream();
PrinterFn* printer = color_output_ ? (PrinterFn*)ColorPrintf
: IgnoreColorPrint;
auto name_color =
(result.report_big_o || result.report_rms) ? COLOR_BLUE : COLOR_GREEN;
ColorPrintf(Out, name_color, "%-*s ", name_field_width_,
printer(Out, name_color, "%-*s ", name_field_width_,
result.benchmark_name.c_str());
if (result.error_occurred) {
ColorPrintf(Out, COLOR_RED, "ERROR OCCURRED: \'%s\'",
printer(Out, COLOR_RED, "ERROR OCCURRED: \'%s\'",
result.error_message.c_str());
ColorPrintf(Out, COLOR_DEFAULT, "\n");
printer(Out, COLOR_DEFAULT, "\n");
return;
}
// Format bytes per second
@@ -91,34 +100,34 @@ void ConsoleReporter::PrintRunData(const Run& result) {
if (result.report_big_o) {
std::string big_o = GetBigOString(result.complexity);
ColorPrintf(Out, COLOR_YELLOW, "%10.2f %s %10.2f %s ", real_time,
printer(Out, COLOR_YELLOW, "%10.2f %s %10.2f %s ", real_time,
big_o.c_str(), cpu_time, big_o.c_str());
} else if (result.report_rms) {
ColorPrintf(Out, COLOR_YELLOW, "%10.0f %% %10.0f %% ", real_time * 100,
printer(Out, COLOR_YELLOW, "%10.0f %% %10.0f %% ", real_time * 100,
cpu_time * 100);
} else {
const char* timeLabel = GetTimeUnitString(result.time_unit);
ColorPrintf(Out, COLOR_YELLOW, "%10.0f %s %10.0f %s ", real_time, timeLabel,
printer(Out, COLOR_YELLOW, "%10.0f %s %10.0f %s ", real_time, timeLabel,
cpu_time, timeLabel);
}
if (!result.report_big_o && !result.report_rms) {
ColorPrintf(Out, COLOR_CYAN, "%10lld", result.iterations);
printer(Out, COLOR_CYAN, "%10lld", result.iterations);
}
if (!rate.empty()) {
ColorPrintf(Out, COLOR_DEFAULT, " %*s", 13, rate.c_str());
printer(Out, COLOR_DEFAULT, " %*s", 13, rate.c_str());
}
if (!items.empty()) {
ColorPrintf(Out, COLOR_DEFAULT, " %*s", 18, items.c_str());
printer(Out, COLOR_DEFAULT, " %*s", 18, items.c_str());
}
if (!result.report_label.empty()) {
ColorPrintf(Out, COLOR_DEFAULT, " %s", result.report_label.c_str());
printer(Out, COLOR_DEFAULT, " %s", result.report_label.c_str());
}
ColorPrintf(Out, COLOR_DEFAULT, "\n");
printer(Out, COLOR_DEFAULT, "\n");
}
} // end namespace benchmark

View File

@@ -113,11 +113,11 @@ inline BENCHMARK_ALWAYS_INLINE int64_t Now() {
uint32_t pmuseren;
uint32_t pmcntenset;
// Read the user mode perf monitor counter access permissions.
asm("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
if (pmuseren & 1) { // Allows reading perfmon counters for user mode code.
asm("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
if (pmcntenset & 0x80000000ul) { // Is it counting?
asm("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
// The counter is set up to count every 64th cycle
return static_cast<int64_t>(pmccntr) * 64; // Should optimize to << 6
}

View File

@@ -239,6 +239,7 @@ void InitializeSystemInfo() {
}
// TODO: also figure out cpuinfo_num_cpus
#elif defined BENCHMARK_OS_WINDOWS
// In NT, read MHz from the registry. If we fail to do so or we're in win9x
// then make a crude estimate.
@@ -251,7 +252,12 @@ void InitializeSystemInfo() {
cpuinfo_cycles_per_second = static_cast<double>((int64_t)data * (int64_t)(1000 * 1000)); // was mhz
else
cpuinfo_cycles_per_second = static_cast<double>(EstimateCyclesPerSecond());
// TODO: also figure out cpuinfo_num_cpus
SYSTEM_INFO sysinfo;
// Use memset as opposed to = {} to avoid GCC missing initializer false positives.
std::memset(&sysinfo, 0, sizeof(SYSTEM_INFO));
GetSystemInfo(&sysinfo);
cpuinfo_num_cpus = sysinfo.dwNumberOfProcessors; // number of logical processors in the current group
#elif defined BENCHMARK_OS_MACOSX
// returning "mach time units" per second. the current number of elapsed

View File

@@ -45,9 +45,15 @@ add_test(donotoptimize_test donotoptimize_test --benchmark_min_time=0.01)
compile_benchmark_test(fixture_test)
add_test(fixture_test fixture_test --benchmark_min_time=0.01)
compile_benchmark_test(register_benchmark_test)
add_test(register_benchmark_test register_benchmark_test --benchmark_min_time=0.01)
compile_benchmark_test(map_test)
add_test(map_test map_test --benchmark_min_time=0.01)
compile_benchmark_test(multiple_ranges_test)
add_test(multiple_ranges_test multiple_ranges_test --benchmark_min_time=0.01)
compile_benchmark_test(reporter_output_test)
add_test(reporter_output_test reporter_output_test --benchmark_min_time=0.01)

View File

@@ -14,7 +14,7 @@ BENCHMARK(BM_empty)->ThreadPerCpu();
void BM_spin_empty(benchmark::State& state) {
while (state.KeepRunning()) {
for (int x = 0; x < state.range_x(); ++x) {
for (int x = 0; x < state.range(0); ++x) {
benchmark::DoNotOptimize(x);
}
}
@@ -23,11 +23,11 @@ BASIC_BENCHMARK_TEST(BM_spin_empty);
BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();
void BM_spin_pause_before(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@@ -39,11 +39,11 @@ BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu();
void BM_spin_pause_during(benchmark::State& state) {
while(state.KeepRunning()) {
state.PauseTiming();
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
state.ResumeTiming();
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@@ -64,11 +64,11 @@ BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu();
void BM_spin_pause_after(benchmark::State& state) {
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@@ -77,15 +77,15 @@ BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();
void BM_spin_pause_before_and_after(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}

View File

@@ -67,7 +67,7 @@ BENCHMARK(BM_Factorial)->UseRealTime();
static void BM_CalculatePiRange(benchmark::State& state) {
double pi = 0.0;
while (state.KeepRunning())
pi = CalculatePi(state.range_x());
pi = CalculatePi(state.range(0));
std::stringstream ss;
ss << pi;
state.SetLabel(ss.str());
@@ -87,25 +87,25 @@ BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range_x());
std::set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(rand());
}
state.SetItemsProcessed(state.iterations() * state.range_y());
state.SetBytesProcessed(state.iterations() * state.range_y() * sizeof(int));
state.SetItemsProcessed(state.iterations() * state.range(1));
state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
}
BENCHMARK(BM_SetInsert)->RangePair(1<<10,8<<10, 1,10);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10,8<<10}, {1,10}});
template<typename Container, typename ValueType = typename Container::value_type>
static void BM_Sequential(benchmark::State& state) {
ValueType v = 42;
while (state.KeepRunning()) {
Container c;
for (int i = state.range_x(); --i; )
for (int i = state.range(0); --i; )
c.push_back(v);
}
const size_t items_processed = state.iterations() * state.range_x();
const size_t items_processed = state.iterations() * state.range(0);
state.SetItemsProcessed(items_processed);
state.SetBytesProcessed(items_processed * sizeof(v));
}
@@ -117,8 +117,8 @@ BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
#endif
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-');
std::string s1(state.range(0), '-');
std::string s2(state.range(0), '-');
while (state.KeepRunning())
benchmark::DoNotOptimize(s1.compare(s2));
}
@@ -147,14 +147,14 @@ BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
static void BM_LongTest(benchmark::State& state) {
double tracker = 0.0;
while (state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i)
for (int i = 0; i < state.range(0); ++i)
benchmark::DoNotOptimize(tracker += i);
}
}
BENCHMARK(BM_LongTest)->Range(1<<16,1<<28);
static void BM_ParallelMemset(benchmark::State& state) {
int size = state.range_x() / sizeof(int);
int size = state.range(0) / sizeof(int);
int thread_size = size / state.threads;
int from = thread_size * state.thread_index;
int to = from + thread_size;
@@ -179,7 +179,7 @@ BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
static void BM_ManualTiming(benchmark::State& state) {
size_t slept_for = 0;
int microseconds = state.range_x();
int microseconds = state.range(0);
std::chrono::duration<double, std::micro> sleep_duration {
static_cast<double>(microseconds)
};

View File

@@ -36,18 +36,27 @@ struct TestCase {
CHECK(err_str.empty()) << "Could not construct regex \"" << regex << "\""
<< " got Error: " << err_str;
std::string near = "<EOF>";
std::string line;
bool first = true;
while (remaining_output.eof() == false) {
CHECK(remaining_output.good());
std::getline(remaining_output, line);
// Keep the first line as context.
if (first) {
near = line;
first = false;
}
if (r.Match(line)) return;
CHECK(match_rule != MR_Next) << "Expected line \"" << line
<< "\" to match regex \"" << regex << "\"";
<< "\" to match regex \"" << regex << "\""
<< "\nstarted matching at line: \"" << near << "\"";
}
CHECK(remaining_output.eof() == false)
<< "End of output reached before match for regex \"" << regex
<< "\" was found";
<< "\" was found"
<< "\nstarted matching at line: \"" << near << "\"";
}
};
@@ -112,7 +121,7 @@ std::string join(First f, Args&&... args) {
return std::string(std::move(f)) + "[ ]+" + join(std::forward<Args>(args)...);
}
std::string dec_re = "[0-9]+\\.[0-9]+";
std::string dec_re = "[0-9]*[.]?[0-9]+([eE][-+][0-9]+)?";
#define ADD_COMPLEXITY_CASES(...) \
int CONCAT(dummy, __LINE__) = AddComplexityTest(__VA_ARGS__)
@@ -138,7 +147,7 @@ int AddComplexityTest(std::vector<TestCase>* console_out, std::vector<TestCase>*
});
AddCases(csv_out, {
{"^\"" + big_o_test_name + "\",," + dec_re + "," + dec_re + "," + big_o + ",,,,,$"},
{"^\"" + rms_test_name + "\",," + dec_re + "," + dec_re + ",,,,,,$"}
{"^\"" + rms_test_name + "\",," + dec_re + "," + dec_re + ",,,,,,$", MR_Next}
});
return 0;
}
@@ -151,12 +160,15 @@ int AddComplexityTest(std::vector<TestCase>* console_out, std::vector<TestCase>*
void BM_Complexity_O1(benchmark::State& state) {
while (state.KeepRunning()) {
for (int i=0; i < 1024; ++i) {
benchmark::DoNotOptimize(&i);
}
state.SetComplexityN(state.range_x());
}
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity(benchmark::o1);
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity([](int){return 1.0; });
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity();
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity([](int){return 1.0; });
const char* big_o_1_test_name = "BM_Complexity_O1_BigO";
const char* rms_o_1_test_name = "BM_Complexity_O1_RMS";
@@ -167,6 +179,10 @@ const char* lambda_big_o_1 = "f\\(N\\)";
ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
big_o_1_test_name, rms_o_1_test_name, enum_auto_big_o_1);
// Add auto enum tests
ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
big_o_1_test_name, rms_o_1_test_name, enum_auto_big_o_1);
// Add lambda tests
ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
big_o_1_test_name, rms_o_1_test_name, lambda_big_o_1);
@@ -185,12 +201,12 @@ std::vector<int> ConstructRandomVector(int size) {
}
void BM_Complexity_O_N(benchmark::State& state) {
auto v = ConstructRandomVector(state.range_x());
const int item_not_in_vector = state.range_x()*2; // Test worst case scenario (item not in vector)
auto v = ConstructRandomVector(state.range(0));
const int item_not_in_vector = state.range(0)*2; // Test worst case scenario (item not in vector)
while (state.KeepRunning()) {
benchmark::DoNotOptimize(std::find(v.begin(), v.end(), item_not_in_vector));
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oN);
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity([](int n) -> double{return n; });
@@ -214,11 +230,11 @@ ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
// ========================================================================= //
static void BM_Complexity_O_N_log_N(benchmark::State& state) {
auto v = ConstructRandomVector(state.range_x());
auto v = ConstructRandomVector(state.range(0));
while (state.KeepRunning()) {
std::sort(v.begin(), v.end());
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oNLogN);
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity([](int n) {return n * std::log2(n); });
@@ -244,14 +260,8 @@ ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
int main(int argc, char* argv[]) {
// Add --color_print=false to argv since we don't want to match color codes.
char new_arg[64];
char* new_argv[64];
std::copy(argv, argv + argc, new_argv);
new_argv[argc++] = std::strcpy(new_arg, "--color_print=false");
benchmark::Initialize(&argc, new_argv);
benchmark::ConsoleReporter CR;
benchmark::Initialize(&argc, argv);
benchmark::ConsoleReporter CR(benchmark::ConsoleReporter::OO_None);
benchmark::JSONReporter JR;
benchmark::CSVReporter CSVR;
struct ReporterTest {

View File

@@ -44,7 +44,7 @@ BENCHMARK_DEFINE_F(MyFixture, Bar)(benchmark::State& st) {
assert(data.get() != nullptr);
assert(*data == 42);
}
st.SetItemsProcessed(st.range_x());
st.SetItemsProcessed(st.range(0));
}
BENCHMARK_REGISTER_F(MyFixture, Bar)->Arg(42);
BENCHMARK_REGISTER_F(MyFixture, Bar)->Arg(42)->ThreadPerCpu();

View File

@@ -17,7 +17,7 @@ std::map<int, int> ConstructRandomMap(int size) {
// Basic version.
static void BM_MapLookup(benchmark::State& state) {
const int size = state.range_x();
const int size = state.range(0);
while (state.KeepRunning()) {
state.PauseTiming();
std::map<int, int> m = ConstructRandomMap(size);
@@ -34,7 +34,7 @@ BENCHMARK(BM_MapLookup)->Range(1 << 3, 1 << 12);
class MapFixture : public ::benchmark::Fixture {
public:
void SetUp(const ::benchmark::State& st) {
m = ConstructRandomMap(st.range_x());
m = ConstructRandomMap(st.range(0));
}
void TearDown(const ::benchmark::State&) {
@@ -45,7 +45,7 @@ class MapFixture : public ::benchmark::Fixture {
};
BENCHMARK_DEFINE_F(MapFixture, Lookup)(benchmark::State& state) {
const int size = state.range_x();
const int size = state.range(0);
while (state.KeepRunning()) {
for (int i = 0; i < size; ++i) {
benchmark::DoNotOptimize(m.find(rand() % size));

View File

@@ -0,0 +1,46 @@
#include "benchmark/benchmark.h"
#include <set>
#include <cassert>
class MultipleRangesFixture : public ::benchmark::Fixture {
public:
MultipleRangesFixture()
: expectedValues({
{1, 3, 5}, {1, 3, 8}, {1, 3, 15}, {2, 3, 5}, {2, 3, 8}, {2, 3, 15},
{1, 4, 5}, {1, 4, 8}, {1, 4, 15}, {2, 4, 5}, {2, 4, 8}, {2, 4, 15},
{1, 7, 5}, {1, 7, 8}, {1, 7, 15}, {2, 7, 5}, {2, 7, 8}, {2, 7, 15},
{7, 6, 3}
})
{
}
void SetUp(const ::benchmark::State& state) {
std::vector<int> ranges = {state.range(0), state.range(1), state.range(2)};
assert(expectedValues.find(ranges) != expectedValues.end());
actualValues.insert(ranges);
}
virtual ~MultipleRangesFixture() {
assert(actualValues.size() == expectedValues.size());
}
std::set<std::vector<int>> expectedValues;
std::set<std::vector<int>> actualValues;
};
BENCHMARK_DEFINE_F(MultipleRangesFixture, Empty)(benchmark::State& state) {
while (state.KeepRunning()) {
int product = state.range(0) * state.range(1) * state.range(2);
for (int x = 0; x < product; x++) {
benchmark::DoNotOptimize(x);
}
}
}
BENCHMARK_REGISTER_F(MultipleRangesFixture, Empty)->RangeMultiplier(2)->Ranges({{1, 2}, {3, 7}, {5, 15}})->Args({7, 6, 3});
BENCHMARK_MAIN()

View File

@@ -9,7 +9,7 @@ void BM_basic(benchmark::State& state) {
}
void BM_basic_slow(benchmark::State& state) {
std::chrono::milliseconds sleep_duration(state.range_x());
std::chrono::milliseconds sleep_duration(state.range(0));
while (state.KeepRunning()) {
std::this_thread::sleep_for(
std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration)
@@ -25,8 +25,8 @@ BENCHMARK(BM_basic_slow)->Arg(1000)->Unit(benchmark::kMillisecond);
BENCHMARK(BM_basic)->Range(1, 8);
BENCHMARK(BM_basic)->RangeMultiplier(2)->Range(1, 8);
BENCHMARK(BM_basic)->DenseRange(10, 15);
BENCHMARK(BM_basic)->ArgPair(42, 42);
BENCHMARK(BM_basic)->RangePair(64, 512, 64, 512);
BENCHMARK(BM_basic)->Args({42, 42});
BENCHMARK(BM_basic)->Ranges({{64, 512}, {64, 512}});
BENCHMARK(BM_basic)->MinTime(0.7);
BENCHMARK(BM_basic)->UseRealTime();
BENCHMARK(BM_basic)->ThreadRange(2, 4);

View File

@@ -0,0 +1,149 @@
#undef NDEBUG
#include "benchmark/benchmark.h"
#include "../src/check.h" // NOTE: check.h is for internal use only!
#include <cassert>
#include <vector>
namespace {
class TestReporter : public benchmark::ConsoleReporter {
public:
virtual void ReportRuns(const std::vector<Run>& report) {
all_runs_.insert(all_runs_.end(), begin(report), end(report));
ConsoleReporter::ReportRuns(report);
}
std::vector<Run> all_runs_;
};
struct TestCase {
std::string name;
const char* label;
TestCase(const char* xname) : name(xname), label(nullptr) {}
TestCase(const char* xname, const char* xlabel)
: name(xname), label(xlabel) {}
typedef benchmark::BenchmarkReporter::Run Run;
void CheckRun(Run const& run) const {
CHECK(name == run.benchmark_name) << "expected " << name
<< " got " << run.benchmark_name;
if (label) {
CHECK(run.report_label == label) << "expected " << label
<< " got " << run.report_label;
} else {
CHECK(run.report_label == "");
}
}
};
std::vector<TestCase> ExpectedResults;
int AddCases(std::initializer_list<TestCase> const& v) {
for (auto N : v) {
ExpectedResults.push_back(N);
}
return 0;
}
#define CONCAT(x, y) CONCAT2(x, y)
#define CONCAT2(x, y) x##y
#define ADD_CASES(...) \
int CONCAT(dummy, __LINE__) = AddCases({__VA_ARGS__})
} // end namespace
typedef benchmark::internal::Benchmark* ReturnVal;
//----------------------------------------------------------------------------//
// Test RegisterBenchmark with no additional arguments
//----------------------------------------------------------------------------//
void BM_function(benchmark::State& state) { while (state.KeepRunning()) {} }
BENCHMARK(BM_function);
ReturnVal dummy = benchmark::RegisterBenchmark(
"BM_function_manual_registration",
BM_function);
ADD_CASES({"BM_function"}, {"BM_function_manual_registration"});
//----------------------------------------------------------------------------//
// Test RegisterBenchmark with additional arguments
// Note: GCC <= 4.8 do not support this form of RegisterBenchmark because they
// reject the variadic pack expansion of lambda captures.
//----------------------------------------------------------------------------//
#ifndef BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
void BM_extra_args(benchmark::State& st, const char* label) {
while (st.KeepRunning()) {}
st.SetLabel(label);
}
int RegisterFromFunction() {
std::pair<const char*, const char*> cases[] = {
{"test1", "One"},
{"test2", "Two"},
{"test3", "Three"}
};
for (auto& c : cases)
benchmark::RegisterBenchmark(c.first, &BM_extra_args, c.second);
return 0;
}
int dummy2 = RegisterFromFunction();
ADD_CASES(
{"test1", "One"},
{"test2", "Two"},
{"test3", "Three"}
);
#endif // BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
//----------------------------------------------------------------------------//
// Test RegisterBenchmark with different callable types
//----------------------------------------------------------------------------//
struct CustomFixture {
void operator()(benchmark::State& st) {
while (st.KeepRunning()) {}
}
};
void TestRegistrationAtRuntime() {
#ifdef BENCHMARK_HAS_CXX11
{
CustomFixture fx;
benchmark::RegisterBenchmark("custom_fixture", fx);
AddCases({"custom_fixture"});
}
#endif
#ifndef BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
{
int x = 42;
auto capturing_lam = [=](benchmark::State& st) {
while (st.KeepRunning()) {}
st.SetLabel(std::to_string(x));
};
benchmark::RegisterBenchmark("lambda_benchmark", capturing_lam);
AddCases({{"lambda_benchmark", "42"}});
}
#endif
}
int main(int argc, char* argv[]) {
TestRegistrationAtRuntime();
benchmark::Initialize(&argc, argv);
TestReporter test_reporter;
benchmark::RunSpecifiedBenchmarks(&test_reporter);
typedef benchmark::BenchmarkReporter::Run Run;
auto EB = ExpectedResults.begin();
for (Run const& run : test_reporter.all_runs_) {
assert(EB != ExpectedResults.end());
EB->CheckRun(run);
++EB;
}
assert(EB == ExpectedResults.end());
return 0;
}

View File

@@ -114,7 +114,9 @@ std::string join(First f, Args&&... args) {
return std::string(std::move(f)) + "[ ]+" + join(std::forward<Args>(args)...);
}
std::string dec_re = "[0-9]+\\.[0-9]+";
std::string dec_re = "[0-9]*[.]?[0-9]+([eE][-+][0-9]+)?";
} // end namespace
@@ -185,7 +187,7 @@ ADD_CASES(&CSVOutputTests, {
void BM_Complexity_O1(benchmark::State& state) {
while (state.KeepRunning()) {
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O1)->Range(1, 1<<18)->Complexity(benchmark::o1);
@@ -203,14 +205,8 @@ ADD_CASES(&ConsoleOutputTests, {
int main(int argc, char* argv[]) {
// Add --color_print=false to argv since we don't want to match color codes.
char new_arg[64];
char* new_argv[64];
std::copy(argv, argv + argc, new_argv);
new_argv[argc++] = std::strcpy(new_arg, "--color_print=false");
benchmark::Initialize(&argc, new_argv);
benchmark::ConsoleReporter CR;
benchmark::Initialize(&argc, argv);
benchmark::ConsoleReporter CR(benchmark::ConsoleReporter::OO_None);
benchmark::JSONReporter JR;
benchmark::CSVReporter CSVR;
struct ReporterTest {

View File

@@ -74,7 +74,7 @@ ADD_CASES("BM_error_before_running",
void BM_error_during_running(benchmark::State& state) {
int first_iter = true;
while (state.KeepRunning()) {
if (state.range_x() == 1 && state.thread_index <= (state.threads / 2)) {
if (state.range(0) == 1 && state.thread_index <= (state.threads / 2)) {
assert(first_iter);
first_iter = false;
state.SkipWithError("error message");
@@ -116,7 +116,7 @@ ADD_CASES(
void BM_error_while_paused(benchmark::State& state) {
bool first_iter = true;
while (state.KeepRunning()) {
if (state.range_x() == 1 && state.thread_index <= (state.threads / 2)) {
if (state.range(0) == 1 && state.thread_index <= (state.threads / 2)) {
assert(first_iter);
first_iter = false;
state.PauseTiming();

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python
"""
compare_bench.py - Compare two benchmarks or their results and report the
difference.
"""
import sys
import gbench
from gbench import util, report
def main():
# Parse the command line flags
def usage():
print('compare_bench.py <test1> <test2> [benchmark options]...')
exit(1)
if '--help' in sys.argv or len(sys.argv) < 3:
usage()
tests = sys.argv[1:3]
bench_opts = sys.argv[3:]
bench_opts = list(bench_opts)
# Run the benchmarks and report the results
json1 = gbench.util.run_or_load_benchmark(tests[0], bench_opts)
json2 = gbench.util.run_or_load_benchmark(tests[1], bench_opts)
output_lines = gbench.report.generate_difference_report(json1, json2)
print 'Comparing %s to %s' % (tests[0], tests[1])
for ln in output_lines:
print(ln)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,46 @@
{
"context": {
"date": "2016-08-02 17:44:46",
"num_cpus": 4,
"mhz_per_cpu": 4228,
"cpu_scaling_enabled": false,
"library_build_type": "release"
},
"benchmarks": [
{
"name": "BM_SameTimes",
"iterations": 1000,
"real_time": 10,
"cpu_time": 10,
"time_unit": "ns"
},
{
"name": "BM_2xFaster",
"iterations": 1000,
"real_time": 50,
"cpu_time": 50,
"time_unit": "ns"
},
{
"name": "BM_2xSlower",
"iterations": 1000,
"real_time": 50,
"cpu_time": 50,
"time_unit": "ns"
},
{
"name": "BM_10PercentFaster",
"iterations": 1000,
"real_time": 100,
"cpu_time": 100,
"time_unit": "ns"
},
{
"name": "BM_10PercentSlower",
"iterations": 1000,
"real_time": 100,
"cpu_time": 100,
"time_unit": "ns"
}
]
}

View File

@@ -0,0 +1,46 @@
{
"context": {
"date": "2016-08-02 17:44:46",
"num_cpus": 4,
"mhz_per_cpu": 4228,
"cpu_scaling_enabled": false,
"library_build_type": "release"
},
"benchmarks": [
{
"name": "BM_SameTimes",
"iterations": 1000,
"real_time": 10,
"cpu_time": 10,
"time_unit": "ns"
},
{
"name": "BM_2xFaster",
"iterations": 1000,
"real_time": 25,
"cpu_time": 25,
"time_unit": "ns"
},
{
"name": "BM_2xSlower",
"iterations": 20833333,
"real_time": 100,
"cpu_time": 100,
"time_unit": "ns"
},
{
"name": "BM_10PercentFaster",
"iterations": 1000,
"real_time": 90,
"cpu_time": 90,
"time_unit": "ns"
},
{
"name": "BM_10PercentSlower",
"iterations": 1000,
"real_time": 110,
"cpu_time": 110,
"time_unit": "ns"
}
]
}

View File

@@ -0,0 +1,8 @@
"""Google Benchmark tooling"""
__author__ = 'Eric Fiselier'
__email__ = 'eric@efcs.ca'
__versioninfo__ = (0, 5, 0)
__version__ = '.'.join(str(v) for v in __versioninfo__) + 'dev'
__all__ = []

View File

@@ -0,0 +1,136 @@
"""report.py - Utilities for reporting statistics about benchmark results
"""
import os
class BenchmarkColor(object):
def __init__(self, name, code):
self.name = name
self.code = code
def __repr__(self):
return '%s%r' % (self.__class__.__name__,
(self.name, self.code))
def __format__(self, format):
return self.code
# Benchmark Colors Enumeration
BC_NONE = BenchmarkColor('NONE', '')
BC_MAGENTA = BenchmarkColor('MAGENTA', '\033[95m')
BC_CYAN = BenchmarkColor('CYAN', '\033[96m')
BC_OKBLUE = BenchmarkColor('OKBLUE', '\033[94m')
BC_HEADER = BenchmarkColor('HEADER', '\033[92m')
BC_WARNING = BenchmarkColor('WARNING', '\033[93m')
BC_WHITE = BenchmarkColor('WHITE', '\033[97m')
BC_FAIL = BenchmarkColor('FAIL', '\033[91m')
BC_ENDC = BenchmarkColor('ENDC', '\033[0m')
BC_BOLD = BenchmarkColor('BOLD', '\033[1m')
BC_UNDERLINE = BenchmarkColor('UNDERLINE', '\033[4m')
def color_format(use_color, fmt_str, *args, **kwargs):
"""
Return the result of 'fmt_str.format(*args, **kwargs)' after transforming
'args' and 'kwargs' according to the value of 'use_color'. If 'use_color'
is False then all color codes in 'args' and 'kwargs' are replaced with
the empty string.
"""
assert use_color is True or use_color is False
if not use_color:
args = [arg if not isinstance(arg, BenchmarkColor) else BC_NONE
for arg in args]
kwargs = {key: arg if not isinstance(arg, BenchmarkColor) else BC_NONE
for key, arg in kwargs.items()}
return fmt_str.format(*args, **kwargs)
def find_longest_name(benchmark_list):
"""
Return the length of the longest benchmark name in a given list of
benchmark JSON objects
"""
longest_name = 1
for bc in benchmark_list:
if len(bc['name']) > longest_name:
longest_name = len(bc['name'])
return longest_name
def calculate_change(old_val, new_val):
"""
Return a float representing the decimal change between old_val and new_val.
"""
return float(new_val - old_val) / abs(old_val)
def generate_difference_report(json1, json2, use_color=True):
"""
Calculate and report the difference between each test of two benchmarks
runs specified as 'json1' and 'json2'.
"""
first_col_width = find_longest_name(json1['benchmarks']) + 5
def find_test(name):
for b in json2['benchmarks']:
if b['name'] == name:
return b
return None
first_line = "{:<{}s} Time CPU".format(
'Benchmark', first_col_width)
output_strs = [first_line, '-' * len(first_line)]
for bn in json1['benchmarks']:
other_bench = find_test(bn['name'])
if not other_bench:
continue
def get_color(res):
if res > 0.05:
return BC_FAIL
elif res > -0.07:
return BC_WHITE
else:
return BC_CYAN
fmt_str = "{}{:<{}s}{endc} {}{:+.2f}{endc} {}{:+.2f}{endc}"
tres = calculate_change(bn['real_time'], other_bench['real_time'])
cpures = calculate_change(bn['cpu_time'], other_bench['cpu_time'])
output_strs += [color_format(use_color, fmt_str,
BC_HEADER, bn['name'], first_col_width,
get_color(tres), tres, get_color(cpures), cpures,
endc=BC_ENDC)]
return output_strs
###############################################################################
# Unit tests
import unittest
class TestReportDifference(unittest.TestCase):
def load_results(self):
import json
testInputs = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'Inputs')
testOutput1 = os.path.join(testInputs, 'test1_run1.json')
testOutput2 = os.path.join(testInputs, 'test1_run2.json')
with open(testOutput1, 'r') as f:
json1 = json.load(f)
with open(testOutput2, 'r') as f:
json2 = json.load(f)
return json1, json2
def test_basic(self):
expect_lines = [
['BM_SameTimes', '+0.00', '+0.00'],
['BM_2xFaster', '-0.50', '-0.50'],
['BM_2xSlower', '+1.00', '+1.00'],
['BM_10PercentFaster', '-0.10', '-0.10'],
['BM_10PercentSlower', '+0.10', '+0.10']
]
json1, json2 = self.load_results()
output_lines = generate_difference_report(json1, json2, use_color=False)
print output_lines
self.assertEqual(len(output_lines), len(expect_lines))
for i in xrange(0, len(output_lines)):
parts = [x for x in output_lines[i].split(' ') if x]
self.assertEqual(len(parts), 3)
self.assertEqual(parts, expect_lines[i])
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,130 @@
"""util.py - General utilities for running, loading, and processing benchmarks
"""
import json
import os
import tempfile
import subprocess
import sys
# Input file type enumeration
IT_Invalid = 0
IT_JSON = 1
IT_Executable = 2
_num_magic_bytes = 2 if sys.platform.startswith('win') else 4
def is_executable_file(filename):
"""
Return 'True' if 'filename' names a valid file which is likely
an executable. A file is considered an executable if it starts with the
magic bytes for a EXE, Mach O, or ELF file.
"""
if not os.path.isfile(filename):
return False
with open(filename, 'r') as f:
magic_bytes = f.read(_num_magic_bytes)
if sys.platform == 'darwin':
return magic_bytes in [
'\xfe\xed\xfa\xce', # MH_MAGIC
'\xce\xfa\xed\xfe', # MH_CIGAM
'\xfe\xed\xfa\xcf', # MH_MAGIC_64
'\xcf\xfa\xed\xfe', # MH_CIGAM_64
'\xca\xfe\xba\xbe', # FAT_MAGIC
'\xbe\xba\xfe\xca' # FAT_CIGAM
]
elif sys.platform.startswith('win'):
return magic_bytes == 'MZ'
else:
return magic_bytes == '\x7FELF'
def is_json_file(filename):
"""
Returns 'True' if 'filename' names a valid JSON output file.
'False' otherwise.
"""
try:
with open(filename, 'r') as f:
json.load(f)
return True
except:
pass
return False
def classify_input_file(filename):
"""
Return a tuple (type, msg) where 'type' specifies the classified type
of 'filename'. If 'type' is 'IT_Invalid' then 'msg' is a human readable
string represeting the error.
"""
ftype = IT_Invalid
err_msg = None
if not os.path.exists(filename):
err_msg = "'%s' does not exist" % filename
elif not os.path.isfile(filename):
err_msg = "'%s' does not name a file" % filename
elif is_executable_file(filename):
ftype = IT_Executable
elif is_json_file(filename):
ftype = IT_JSON
else:
err_msg = "'%s' does not name a valid benchmark executable or JSON file"
return ftype, err_msg
def check_input_file(filename):
"""
Classify the file named by 'filename' and return the classification.
If the file is classified as 'IT_Invalid' print an error message and exit
the program.
"""
ftype, msg = classify_input_file(filename)
if ftype == IT_Invalid:
print "Invalid input file: %s" % msg
sys.exit(1)
return ftype
def load_benchmark_results(fname):
"""
Read benchmark output from a file and return the JSON object.
REQUIRES: 'fname' names a file containing JSON benchmark output.
"""
with open(fname, 'r') as f:
return json.load(f)
def run_benchmark(exe_name, benchmark_flags):
"""
Run a benchmark specified by 'exe_name' with the specified
'benchmark_flags'. The benchmark is run directly as a subprocess to preserve
real time console output.
RETURNS: A JSON object representing the benchmark output
"""
thandle, tname = tempfile.mkstemp()
os.close(thandle)
cmd = [exe_name] + benchmark_flags
print("RUNNING: %s" % ' '.join(cmd))
exitCode = subprocess.call(cmd + ['--benchmark_out=%s' % tname])
if exitCode != 0:
print('TEST FAILED...')
sys.exit(exitCode)
json_res = load_benchmark_results(tname)
os.unlink(tname)
return json_res
def run_or_load_benchmark(filename, benchmark_flags):
"""
Get the results for a specified benchmark. If 'filename' specifies
an executable benchmark then the results are generated by running the
benchmark. Otherwise 'filename' must name a valid JSON output file,
which is loaded and the result returned.
"""
ftype = check_input_file(filename)
if ftype == IT_JSON:
return load_benchmark_results(filename)
elif ftype == IT_Executable:
return run_benchmark(filename, benchmark_flags)
else:
assert False # This branch is unreachable