DO NOT MERGE: Fix bug in random.
Test: ./run_test.py --bitness 32 Test: ./run_test.py --bitness 64 Test: ./run_test.py --bitness 64 --host Bug: https://bugs.chromium.org/p/chromium/issues/detail?id=994957 Bug: http://b/139690488 Change-Id: I71708114d7fc8ed90c30b4d32b01d3f3aef7600b (cherry picked from commit a1d1caa3d831030ce802ed335a9743180911d553) (cherry picked from commit b8d9dff1befd40627b8c2c6e021cd5a3e4fe8b52)
This commit is contained in:
@@ -4576,7 +4576,10 @@ public:
|
|||||||
|
|
||||||
template<class _IntType>
|
template<class _IntType>
|
||||||
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
||||||
: __mean_(__mean)
|
// According to the standard `inf` is a valid input, but it causes the
|
||||||
|
// distribution to hang, so we replace it with the maximum representable
|
||||||
|
// mean.
|
||||||
|
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
|
||||||
{
|
{
|
||||||
if (__mean_ < 10)
|
if (__mean_ < 10)
|
||||||
{
|
{
|
||||||
@@ -4594,7 +4597,7 @@ poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
|||||||
{
|
{
|
||||||
__s_ = _VSTD::sqrt(__mean_);
|
__s_ = _VSTD::sqrt(__mean_);
|
||||||
__d_ = 6 * __mean_ * __mean_;
|
__d_ = 6 * __mean_ * __mean_;
|
||||||
__l_ = static_cast<result_type>(__mean_ - 1.1484);
|
__l_ = std::trunc(__mean_ - 1.1484);
|
||||||
__omega_ = .3989423 / __s_;
|
__omega_ = .3989423 / __s_;
|
||||||
double __b1_ = .4166667E-1 / __mean_;
|
double __b1_ = .4166667E-1 / __mean_;
|
||||||
double __b2_ = .3 * __b1_ * __b1_;
|
double __b2_ = .3 * __b1_ * __b1_;
|
||||||
@@ -4611,12 +4614,12 @@ template<class _URNG>
|
|||||||
_IntType
|
_IntType
|
||||||
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
||||||
{
|
{
|
||||||
result_type __x;
|
double __tx;
|
||||||
uniform_real_distribution<double> __urd;
|
uniform_real_distribution<double> __urd;
|
||||||
if (__pr.__mean_ < 10)
|
if (__pr.__mean_ < 10)
|
||||||
{
|
{
|
||||||
__x = 0;
|
__tx = 0;
|
||||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__x)
|
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
||||||
__p *= __urd(__urng);
|
__p *= __urd(__urng);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@@ -4626,19 +4629,19 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||||||
double __u;
|
double __u;
|
||||||
if (__g > 0)
|
if (__g > 0)
|
||||||
{
|
{
|
||||||
__x = static_cast<result_type>(__g);
|
__tx = std::trunc(__g);
|
||||||
if (__x >= __pr.__l_)
|
if (__tx >= __pr.__l_)
|
||||||
return __x;
|
return std::__clamp_to_integral<result_type>(__tx);
|
||||||
__difmuk = __pr.__mean_ - __x;
|
__difmuk = __pr.__mean_ - __tx;
|
||||||
__u = __urd(__urng);
|
__u = __urd(__urng);
|
||||||
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
||||||
return __x;
|
return std::__clamp_to_integral<result_type>(__tx);
|
||||||
}
|
}
|
||||||
exponential_distribution<double> __edist;
|
exponential_distribution<double> __edist;
|
||||||
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
||||||
{
|
{
|
||||||
double __e;
|
double __e;
|
||||||
if (__using_exp_dist || __g < 0)
|
if (__using_exp_dist || __g <= 0)
|
||||||
{
|
{
|
||||||
double __t;
|
double __t;
|
||||||
do
|
do
|
||||||
@@ -4648,31 +4651,31 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||||||
__u += __u - 1;
|
__u += __u - 1;
|
||||||
__t = 1.8 + (__u < 0 ? -__e : __e);
|
__t = 1.8 + (__u < 0 ? -__e : __e);
|
||||||
} while (__t <= -.6744);
|
} while (__t <= -.6744);
|
||||||
__x = __pr.__mean_ + __pr.__s_ * __t;
|
__tx = std::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
||||||
__difmuk = __pr.__mean_ - __x;
|
__difmuk = __pr.__mean_ - __tx;
|
||||||
__using_exp_dist = true;
|
__using_exp_dist = true;
|
||||||
}
|
}
|
||||||
double __px;
|
double __px;
|
||||||
double __py;
|
double __py;
|
||||||
if (__x < 10)
|
if (__tx < 10 && __tx >= 0)
|
||||||
{
|
{
|
||||||
const result_type __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
const result_type __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
||||||
40320, 362880};
|
40320, 362880};
|
||||||
__px = -__pr.__mean_;
|
__px = -__pr.__mean_;
|
||||||
__py = _VSTD::pow(__pr.__mean_, (double)__x) / __fac[__x];
|
__py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
double __del = .8333333E-1 / __x;
|
double __del = .8333333E-1 / __tx;
|
||||||
__del -= 4.8 * __del * __del * __del;
|
__del -= 4.8 * __del * __del * __del;
|
||||||
double __v = __difmuk / __x;
|
double __v = __difmuk / __tx;
|
||||||
if (_VSTD::abs(__v) > 0.25)
|
if (_VSTD::abs(__v) > 0.25)
|
||||||
__px = __x * _VSTD::log(1 + __v) - __difmuk - __del;
|
__px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||||
else
|
else
|
||||||
__px = __x * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
__px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||||
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
||||||
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
||||||
__py = .3989423 / _VSTD::sqrt(__x);
|
__py = .3989423 / _VSTD::sqrt(__tx);
|
||||||
}
|
}
|
||||||
double __r = (0.5 - __difmuk) / __pr.__s_;
|
double __r = (0.5 - __difmuk) / __pr.__s_;
|
||||||
double __r2 = __r * __r;
|
double __r2 = __r * __r;
|
||||||
@@ -4692,7 +4695,7 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return __x;
|
return std::__clamp_to_integral<result_type>(__tx);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class _CharT, class _Traits, class _IntType>
|
template <class _CharT, class _Traits, class _IntType>
|
||||||
|
|||||||
@@ -29,6 +29,20 @@ sqr(T x)
|
|||||||
return x * x;
|
return x * x;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct Eng : std::mt19937 {
|
||||||
|
using Base = std::mt19937;
|
||||||
|
using Base::Base;
|
||||||
|
};
|
||||||
|
|
||||||
|
void test_small_inputs() {
|
||||||
|
Eng engine;
|
||||||
|
std::geometric_distribution<std::int16_t> distribution(5.45361e-311);
|
||||||
|
for (auto i=0; i < 1000; ++i) {
|
||||||
|
volatile auto res = distribution(engine);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
test1()
|
test1()
|
||||||
{
|
{
|
||||||
@@ -295,4 +309,5 @@ int main()
|
|||||||
test4();
|
test4();
|
||||||
test5();
|
test5();
|
||||||
test6();
|
test6();
|
||||||
|
test_small_inputs();
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -29,6 +29,68 @@ sqr(T x)
|
|||||||
return x * x;
|
return x * x;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void test_bad_ranges() {
|
||||||
|
// Test cases where the mean is around the largest representable integer for
|
||||||
|
// `result_type`. These cases don't generate valid poisson distributions, but
|
||||||
|
// at least they don't blow up.
|
||||||
|
std::mt19937 eng;
|
||||||
|
|
||||||
|
{
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(32710.9);
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<std::int16_t>::max());
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(
|
||||||
|
static_cast<double>(std::numeric_limits<std::int16_t>::max()) + 10);
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(
|
||||||
|
static_cast<double>(std::numeric_limits<std::int16_t>::max()) * 2);
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<double>::infinity());
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(0);
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||||
|
std::poisson_distribution<std::int16_t> distribution(-100);
|
||||||
|
for (int i=0; i < 1000; ++i) {
|
||||||
|
volatile std::int16_t res = distribution(eng);
|
||||||
|
((void)res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
{
|
{
|
||||||
@@ -148,4 +210,6 @@ int main()
|
|||||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
test_bad_ranges();
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user