[rand.dist.samp.plinear]. This means we've got a fully tested and functional <random>! 489 tests over 48 sections are passing. :-) The only thing still on my plate in this area is to back-port some of this technology to random_shuffle/shuffle in <algorithm>. That will involve shuffling header bits around (<random> depepends on <algorithm>), but it won't entail that much development (compared to what has been required for <random>).
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@104575 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -0,0 +1,341 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_linear_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g);
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <random>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x*x;
|
||||
}
|
||||
|
||||
double
|
||||
f(double x, double a, double m, double b, double c)
|
||||
{
|
||||
return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {0, 1, 1, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {0, 0, 1, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {1, 0, 0, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16};
|
||||
double p[] = {0, 1, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14};
|
||||
double p[] = {1, 1};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_linear_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::sort(u.begin(), u.end());
|
||||
int kp = -1;
|
||||
double a;
|
||||
double m;
|
||||
double bk;
|
||||
double c;
|
||||
std::vector<double> areas(Np);
|
||||
double S = 0;
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
{
|
||||
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
||||
S += areas[i];
|
||||
}
|
||||
for (int i = 0; i < areas.size(); ++i)
|
||||
areas[i] /= S;
|
||||
for (int i = 0; i < Np+1; ++i)
|
||||
p[i] /= S;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
||||
if (k != kp)
|
||||
{
|
||||
a = 0;
|
||||
for (int j = 0; j < k; ++j)
|
||||
a += areas[j];
|
||||
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
||||
bk = b[k];
|
||||
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
||||
kp = k;
|
||||
}
|
||||
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user