Overhaul unique_ptr - Implement LWG 2801, 2905, 2520.

This patch overhauls both specializations of unique_ptr while implementing
the following LWG issues:

* LWG 2801 - This issue constrains unique_ptr's constructors when the deleter type
  is not default constructible. Additionally it adds SFINAE conditions
  to unique_ptr<T[]>::unique_ptr(Up).

* LWG 2905 - This issue reworks the unique_ptr(pointer, /* see below */ deleter)
  constructors so that they correctly SFINAE when the deleter argument cannot
  be used to construct the stored deleter.

* LWG 2520 - This issue fixes initializing unique_ptr<T[]> from nullptr.
  Libc++ had previously implemented this issue, but the suggested resolution
  still broke initialization from NULL. This patch re-works the
  unique_ptr<T[]>(Up, deleter) overloads so that they accept NULL as well
  as nullptr.

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@300406 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier
2017-04-16 01:51:04 +00:00
parent 98d9a858da
commit a4fd0c9d61
19 changed files with 1312 additions and 462 deletions

View File

@@ -82,31 +82,32 @@ void test_sfinae() {
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_assignable<U, U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, GenericDeleter> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_assignable<U, U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, NCDeleter<VT>&> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_assignable<U, U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, const NCDeleter<VT>&> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_assignable<U, U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
}
int main() {
{
test_basic</*IsArray*/ false>();

View File

@@ -0,0 +1,414 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03
// <memory>
// unique_ptr
// Test unique_ptr converting move ctor
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
#include "type_id.h"
template <int ID = 0>
struct GenericDeleter {
void operator()(void*) const {}
};
template <int ID = 0>
struct GenericConvertingDeleter {
template <int OID>
GenericConvertingDeleter(GenericConvertingDeleter<OID>) {}
template <int OID>
GenericConvertingDeleter& operator=(GenericConvertingDeleter<OID> const&) {
return *this;
}
void operator()(void*) const {}
};
template <class T, class U>
using EnableIfNotSame = typename std::enable_if<
!std::is_same<typename std::decay<T>::type, typename std::decay<U>::type>::value
>::type;
template <template <int> class Templ, class Other>
struct is_specialization : std::false_type {};
template <template <int> class Templ, int ID>
struct is_specialization<Templ, Templ<ID> > : std::true_type {};
template <template <int> class Templ, class Other>
using EnableIfSpecialization = typename std::enable_if<
is_specialization<Templ, typename std::decay<Other>::type >::value
>::type;
template <int ID>
struct TrackingDeleter {
TrackingDeleter() : arg_type(&makeArgumentID<>()) {}
TrackingDeleter(TrackingDeleter const&)
: arg_type(&makeArgumentID<TrackingDeleter const&>()) {}
TrackingDeleter(TrackingDeleter&&)
: arg_type(&makeArgumentID<TrackingDeleter &&>()) {}
template <class T, class = EnableIfSpecialization<TrackingDeleter, T> >
TrackingDeleter(T&&) : arg_type(&makeArgumentID<T&&>()) {}
TrackingDeleter& operator=(TrackingDeleter const&) {
arg_type = &makeArgumentID<TrackingDeleter const&>();
return *this;
}
TrackingDeleter& operator=(TrackingDeleter &&) {
arg_type = &makeArgumentID<TrackingDeleter &&>();
return *this;
}
template <class T, class = EnableIfSpecialization<TrackingDeleter, T> >
TrackingDeleter& operator=(T&&) {
arg_type = &makeArgumentID<T&&>();
return *this;
}
void operator()(void*) const {}
public:
TypeID const* reset() const {
TypeID const* tmp = arg_type;
arg_type = nullptr;
return tmp;
}
mutable TypeID const* arg_type;
};
template <int ID>
struct ConstTrackingDeleter {
ConstTrackingDeleter() : arg_type(&makeArgumentID<>()) {}
ConstTrackingDeleter(ConstTrackingDeleter const&)
: arg_type(&makeArgumentID<ConstTrackingDeleter const&>()) {}
ConstTrackingDeleter(ConstTrackingDeleter&&)
: arg_type(&makeArgumentID<ConstTrackingDeleter &&>()) {}
template <class T, class = EnableIfSpecialization<ConstTrackingDeleter, T> >
ConstTrackingDeleter(T&&) : arg_type(&makeArgumentID<T&&>()) {}
const ConstTrackingDeleter& operator=(ConstTrackingDeleter const&) const {
arg_type = &makeArgumentID<ConstTrackingDeleter const&>();
return *this;
}
const ConstTrackingDeleter& operator=(ConstTrackingDeleter &&) const {
arg_type = &makeArgumentID<ConstTrackingDeleter &&>();
return *this;
}
template <class T, class = EnableIfSpecialization<ConstTrackingDeleter, T> >
const ConstTrackingDeleter& operator=(T&&) const {
arg_type = &makeArgumentID<T&&>();
return *this;
}
void operator()(void*) const {}
public:
TypeID const* reset() const {
TypeID const* tmp = arg_type;
arg_type = nullptr;
return tmp;
}
mutable TypeID const* arg_type;
};
template <class ExpectT, int ID>
bool checkArg(TrackingDeleter<ID> const& d) {
return d.arg_type && *d.arg_type == makeArgumentID<ExpectT>();
}
template <class ExpectT, int ID>
bool checkArg(ConstTrackingDeleter<ID> const& d) {
return d.arg_type && *d.arg_type == makeArgumentID<ExpectT>();
}
template <class From, bool AssignIsConst = false>
struct AssignDeleter {
AssignDeleter() = default;
AssignDeleter(AssignDeleter const&) = default;
AssignDeleter(AssignDeleter&&) = default;
AssignDeleter& operator=(AssignDeleter const&) = delete;
AssignDeleter& operator=(AssignDeleter &&) = delete;
template <class T> AssignDeleter& operator=(T&&) && = delete;
template <class T> AssignDeleter& operator=(T&&) const && = delete;
template <class T, class = typename std::enable_if<
std::is_same<T&&, From>::value && !AssignIsConst
>::type>
AssignDeleter& operator=(T&&) & { return *this; }
template <class T, class = typename std::enable_if<
std::is_same<T&&, From>::value && AssignIsConst
>::type>
const AssignDeleter& operator=(T&&) const & { return *this; }
template <class T>
void operator()(T) const {}
};
template <class VT, class DDest, class DSource>
void doDeleterTest() {
using U1 = std::unique_ptr<VT, DDest>;
using U2 = std::unique_ptr<VT, DSource>;
static_assert(std::is_nothrow_assignable<U1, U2&&>::value, "");
typename std::decay<DDest>::type ddest;
typename std::decay<DSource>::type dsource;
U1 u1(nullptr, ddest);
U2 u2(nullptr, dsource);
u1 = std::move(u2);
}
template <bool IsArray>
void test_sfinae() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
{ // Test that different non-reference deleter types are allowed so long
// as they convert to each other.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
static_assert(std::is_assignable<U1, U2&&>::value, "");
}
{ // Test that different non-reference deleter types are disallowed when
// they cannot convert.
using U1 = std::unique_ptr<VT, GenericDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericDeleter<1> >;
static_assert(!std::is_assignable<U1, U2&&>::value, "");
}
{ // Test that if the deleter assignment is not valid the assignment operator
// SFINAEs.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> const& >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(!std::is_assignable<U1, U2&&>::value, "");
static_assert(!std::is_assignable<U1, U3&&>::value, "");
static_assert(!std::is_assignable<U1, U4&&>::value, "");
static_assert(!std::is_assignable<U1, U5&&>::value, "");
using U1C = std::unique_ptr<const VT, GenericConvertingDeleter<0> const&>;
static_assert(std::is_nothrow_assignable<U1C, U1&&>::value, "");
}
{ // Test that if the deleter assignment is not valid the assignment operator
// SFINAEs.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> & >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(std::is_nothrow_assignable<U1, U2&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U3&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U4&&>::value, "");
static_assert(std::is_nothrow_assignable<U1, U5&&>::value, "");
using U1C = std::unique_ptr<const VT, GenericConvertingDeleter<0> &>;
static_assert(std::is_nothrow_assignable<U1C, U1&&>::value, "");
}
{ // Test that non-reference destination deleters can be assigned
// from any source deleter type with a sutible conversion. Including
// reference types.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> const &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> &>;
using U6 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(std::is_assignable<U1, U2&&>::value, "");
static_assert(std::is_assignable<U1, U3&&>::value, "");
static_assert(std::is_assignable<U1, U4&&>::value, "");
static_assert(std::is_assignable<U1, U5&&>::value, "");
static_assert(std::is_assignable<U1, U6&&>::value, "");
}
/////////////////////////////////////////////////////////////////////////////
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del&&>;
using ADC = AssignDeleter<Del&&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del>();
doDeleterTest<VT, AD&, Del>();
doDeleterTest<VT, ADC const&, Del>();
}
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del&>;
using ADC = AssignDeleter<Del&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del&>();
doDeleterTest<VT, AD&, Del&>();
doDeleterTest<VT, ADC const&, Del&>();
}
{
using Del = GenericDeleter<0>;
using AD = AssignDeleter<Del const&>;
using ADC = AssignDeleter<Del const&, /*AllowConstAssign*/true>;
doDeleterTest<VT, AD, Del const&>();
doDeleterTest<VT, AD&, Del const&>();
doDeleterTest<VT, ADC const&, Del const&>();
}
}
template <bool IsArray>
void test_noexcept() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
{
typedef std::unique_ptr<const VT> APtr;
typedef std::unique_ptr<VT> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, CDeleter<const VT> > APtr;
typedef std::unique_ptr<VT, CDeleter<VT> > BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, NCDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, NCDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, const NCConstDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, const NCConstDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_assignable<APtr, BPtr>::value, "");
}
}
template <bool IsArray>
void test_deleter_value_category() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
using TD1 = TrackingDeleter<1>;
using TD2 = TrackingDeleter<2>;
TD1 d1;
TD2 d2;
using CD1 = ConstTrackingDeleter<1>;
using CD2 = ConstTrackingDeleter<2>;
CD1 cd1;
CD2 cd2;
{ // Test non-reference deleter conversions
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2 >;
U1 u1;
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&&>(u1.get_deleter()));
}
{ // Test assignment to non-const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2 >;
U1 u1(nullptr, d1);
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&&>(u1.get_deleter()));
}
{ // Test assignment to const&.
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 >;
U1 u1(nullptr, cd1);
U2 u2;
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2&&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2& >;
U1 u1;
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, TD1 >;
using U2 = std::unique_ptr<VT, TD2 const& >;
U1 u1;
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2 const&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2& >;
U1 u1(nullptr, d1);
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2&>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, TD1& >;
using U2 = std::unique_ptr<VT, TD2 const& >;
U1 u1(nullptr, d1);
U2 u2(nullptr, d2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<TD2 const&>(u1.get_deleter()));
}
{ // Test assignment from non-const ref
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 & >;
U1 u1(nullptr, cd1);
U2 u2(nullptr, cd2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2 &>(u1.get_deleter()));
}
{ // Test assignment from const ref
using U1 = std::unique_ptr<VT, CD1 const& >;
using U2 = std::unique_ptr<VT, CD2 const& >;
U1 u1(nullptr, cd1);
U2 u2(nullptr, cd2);
u1.get_deleter().reset();
u1 = std::move(u2);
assert(checkArg<CD2 const&>(u1.get_deleter()));
}
}
int main() {
{
test_sfinae</*IsArray*/false>();
test_noexcept<false>();
test_deleter_value_category<false>();
}
{
test_sfinae</*IsArray*/true>();
test_noexcept<true>();
test_deleter_value_category<true>();
}
}

View File

@@ -31,8 +31,6 @@
#include "deleter_types.h"
#include "unique_ptr_test_helper.h"
#include "test_workarounds.h" // For TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES
#if defined(_LIBCPP_VERSION) && TEST_STD_VER >= 11
_LIBCPP_SAFE_STATIC std::unique_ptr<int> global_static_unique_ptr_single;
_LIBCPP_SAFE_STATIC std::unique_ptr<int[]> global_static_unique_ptr_runtime;
@@ -47,7 +45,7 @@ struct NonDefaultDeleter {
template <class ElemType>
void test_sfinae() {
#if TEST_STD_VER >= 11 && !defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resultion when
// the deleter is a pointer type
using U = std::unique_ptr<ElemType, void (*)(void*)>;

View File

@@ -18,7 +18,6 @@
#include <cassert>
#include "test_macros.h"
#include "deleter_types.h"
#include "unique_ptr_test_helper.h"
//=============================================================================
@@ -139,13 +138,37 @@ void test_basic() {
assert(A::count == 0);
}
template <class VT>
void test_noexcept() {
#if TEST_STD_VER >= 11
{
typedef std::unique_ptr<VT> U;
static_assert(std::is_nothrow_move_constructible<U>::value, "");
}
{
typedef std::unique_ptr<VT, Deleter<VT> > U;
static_assert(std::is_nothrow_move_constructible<U>::value, "");
}
{
typedef std::unique_ptr<VT, NCDeleter<VT> &> U;
static_assert(std::is_nothrow_move_constructible<U>::value, "");
}
{
typedef std::unique_ptr<VT, const NCConstDeleter<VT> &> U;
static_assert(std::is_nothrow_move_constructible<U>::value, "");
}
#endif
}
int main() {
{
test_basic</*IsArray*/ false>();
test_sfinae<int>();
test_noexcept<int>();
}
{
test_basic</*IsArray*/ true>();
test_sfinae<int[]>();
test_noexcept<int[]>();
}
}

View File

@@ -0,0 +1,124 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03
// <memory>
// unique_ptr
// Test unique_ptr converting move ctor
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
template <int ID = 0>
struct GenericDeleter {
void operator()(void*) const {}
};
template <int ID = 0>
struct GenericConvertingDeleter {
template <int OID>
GenericConvertingDeleter(GenericConvertingDeleter<OID>) {}
void operator()(void*) const {}
};
template <bool IsArray>
void test_sfinae() {
#if TEST_STD_VER >= 11
typedef typename std::conditional<IsArray, A[], A>::type VT;
{ // Test that different non-reference deleter types are allowed so long
// as they convert to each other.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
static_assert(std::is_constructible<U1, U2&&>::value, "");
}
{ // Test that different non-reference deleter types are disallowed when
// they cannot convert.
using U1 = std::unique_ptr<VT, GenericDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericDeleter<1> >;
static_assert(!std::is_constructible<U1, U2&&>::value, "");
}
{ // Test that if the destination deleter is a reference type then only
// exact matches are allowed.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> const& >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(!std::is_constructible<U1, U2&&>::value, "");
static_assert(!std::is_constructible<U1, U3&&>::value, "");
static_assert(!std::is_constructible<U1, U4&&>::value, "");
static_assert(!std::is_constructible<U1, U5&&>::value, "");
using U1C = std::unique_ptr<const VT, GenericConvertingDeleter<0> const&>;
static_assert(std::is_nothrow_constructible<U1C, U1&&>::value, "");
}
{ // Test that non-reference destination deleters can be constructed
// from any source deleter type with a sutible conversion. Including
// reference types.
using U1 = std::unique_ptr<VT, GenericConvertingDeleter<0> >;
using U2 = std::unique_ptr<VT, GenericConvertingDeleter<0> &>;
using U3 = std::unique_ptr<VT, GenericConvertingDeleter<0> const &>;
using U4 = std::unique_ptr<VT, GenericConvertingDeleter<1> >;
using U5 = std::unique_ptr<VT, GenericConvertingDeleter<1> &>;
using U6 = std::unique_ptr<VT, GenericConvertingDeleter<1> const&>;
static_assert(std::is_constructible<U1, U2&&>::value, "");
static_assert(std::is_constructible<U1, U3&&>::value, "");
static_assert(std::is_constructible<U1, U4&&>::value, "");
static_assert(std::is_constructible<U1, U5&&>::value, "");
static_assert(std::is_constructible<U1, U6&&>::value, "");
}
#endif
}
template <bool IsArray>
void test_noexcept() {
#if TEST_STD_VER >= 11
typedef typename std::conditional<IsArray, A[], A>::type VT;
{
typedef std::unique_ptr<const VT> APtr;
typedef std::unique_ptr<VT> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, CDeleter<const VT> > APtr;
typedef std::unique_ptr<VT, CDeleter<VT> > BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, NCDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, NCDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<const VT, const NCConstDeleter<const VT>&> APtr;
typedef std::unique_ptr<VT, const NCConstDeleter<const VT>&> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
#endif
}
int main() {
{
test_sfinae</*IsArray*/false>();
test_noexcept<false>();
}
{
test_sfinae</*IsArray*/true>();
test_noexcept<true>();
}
}

View File

@@ -77,4 +77,7 @@ void test_sfinae() {
}
}
int main() { test_sfinae(); }
int main() {
test_sfinae();
}

View File

@@ -22,7 +22,7 @@
#include <utility>
#include <cassert>
#include "deleter_types.h"
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
// test converting move ctor. Should only require a MoveConstructible deleter, or if
@@ -135,7 +135,34 @@ void test_sfinae() {
}
}
void test_noexcept() {
{
typedef std::unique_ptr<A> APtr;
typedef std::unique_ptr<B> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<A, Deleter<A> > APtr;
typedef std::unique_ptr<B, Deleter<B> > BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<A, NCDeleter<A>&> APtr;
typedef std::unique_ptr<B, NCDeleter<A>&> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
{
typedef std::unique_ptr<A, const NCConstDeleter<A>&> APtr;
typedef std::unique_ptr<B, const NCConstDeleter<A>&> BPtr;
static_assert(std::is_nothrow_constructible<APtr, BPtr>::value, "");
}
}
int main() {
{
test_sfinae();
test_noexcept();
}
{
typedef std::unique_ptr<A> APtr;
typedef std::unique_ptr<B> BPtr;
@@ -218,5 +245,4 @@ int main() {
}
checkNoneAlive();
}
test_sfinae();
}

View File

@@ -17,25 +17,14 @@
#include <cassert>
#include "test_macros.h"
#include "deleter_types.h"
#include "unique_ptr_test_helper.h"
#include "test_workarounds.h" // For TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES
// default unique_ptr ctor should only require default Deleter ctor
class DefaultDeleter {
int state_;
#if defined(_LIBCPP_VERSION) && TEST_STD_VER >= 11
_LIBCPP_SAFE_STATIC std::unique_ptr<int> global_static_unique_ptr_single(nullptr);
_LIBCPP_SAFE_STATIC std::unique_ptr<int[]> global_static_unique_ptr_runtime(nullptr);
#endif
DefaultDeleter(DefaultDeleter&);
DefaultDeleter& operator=(DefaultDeleter&);
public:
DefaultDeleter() : state_(5) {}
int state() const { return state_; }
void operator()(void*) {}
};
#if TEST_STD_VER >= 11
struct NonDefaultDeleter {
@@ -46,15 +35,6 @@ struct NonDefaultDeleter {
template <class VT>
void test_basic() {
{
std::unique_ptr<VT> p(nullptr);
assert(p.get() == 0);
}
{
std::unique_ptr<VT, DefaultDeleter> p(nullptr);
assert(p.get() == 0);
assert(p.get_deleter().state() == 5);
}
#if TEST_STD_VER >= 11
{
using U1 = std::unique_ptr<VT>;
@@ -65,11 +45,20 @@ void test_basic() {
"");
}
#endif
{
std::unique_ptr<VT> p(nullptr);
assert(p.get() == 0);
}
{
std::unique_ptr<VT, NCDeleter<VT> > p(nullptr);
assert(p.get() == 0);
assert(p.get_deleter().state() == 0);
}
}
template <class VT>
void test_sfinae() {
#if TEST_STD_VER >= 11 && !defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resultion when
// the deleter is a pointer type
using U = std::unique_ptr<VT, void (*)(void*)>;

View File

@@ -35,8 +35,6 @@
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
#include "test_workarounds.h" // For TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES
// unique_ptr(pointer) ctor should only require default Deleter ctor
template <bool IsArray>
@@ -47,8 +45,14 @@ void test_pointer() {
{
using U1 = std::unique_ptr<ValueT>;
using U2 = std::unique_ptr<ValueT, Deleter<ValueT> >;
// Test for noexcept
static_assert(std::is_nothrow_constructible<U1, A*>::value, "");
static_assert(std::is_nothrow_constructible<U2, A*>::value, "");
// Test for explicit
static_assert(!std::is_convertible<A*, U1>::value, "");
static_assert(!std::is_convertible<A*, U2>::value, "");
}
#endif
{
@@ -103,7 +107,7 @@ struct GenericDeleter {
template <class T>
void test_sfinae() {
#if TEST_STD_VER >= 11 && !defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resultion when
// the deleter is a pointer type
using U = std::unique_ptr<T, void (*)(void*)>;

View File

@@ -19,17 +19,11 @@
#include <memory>
#include "test_workarounds.h"
struct Deleter {
void operator()(int* p) const { delete p; }
};
int main() {
#if defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
// expected-error@memory:* {{static_assert failed "rvalue deleter bound to reference"}}
#else
// expected-error@+2 {{call to deleted constructor of 'std::unique_ptr<int, const Deleter &>}}
#endif
// expected-error@+1 {{call to deleted constructor of 'std::unique_ptr<int, const Deleter &>}}
std::unique_ptr<int, const Deleter&> s((int*)nullptr, Deleter());
}

View File

@@ -29,8 +29,6 @@
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
#include "test_workarounds.h" // For TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES
bool my_free_called = false;
void my_free(void*) { my_free_called = true; }
@@ -56,7 +54,7 @@ struct NoCopyMoveDeleter : DeleterBase {
template <bool IsArray>
void test_sfinae() {
#if TEST_STD_VER >= 11 && !defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
#if TEST_STD_VER >= 11
typedef typename std::conditional<!IsArray, int, int[]>::type VT;
{
using D = CopyOnlyDeleter;
@@ -137,13 +135,13 @@ void test_noexcept() {
}
void test_sfinae_runtime() {
#if TEST_STD_VER >= 11 && !defined(TEST_WORKAROUND_UPCOMING_UNIQUE_PTR_CHANGES)
#if TEST_STD_VER >= 11
{
using D = CopyOnlyDeleter;
using U = std::unique_ptr<A[], D>;
static_assert(std::is_constructible<U, A*, D const&>::value, "");
static_assert(std::is_constructible<U, A*, D&>::value, "");
static_assert(std::is_constructible<U, A*, D&&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D const&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D&&>::value, "");
static_assert(!std::is_constructible<U, B*, D const&>::value, "");
static_assert(!std::is_constructible<U, B*, D&>::value, "");
@@ -158,7 +156,7 @@ void test_sfinae_runtime() {
using U = std::unique_ptr<A[], D>;
static_assert(!std::is_constructible<U, A*, D const&>::value, "");
static_assert(!std::is_constructible<U, A*, D&>::value, "");
static_assert(std::is_constructible<U, A*, D&&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D&&>::value, "");
static_assert(!std::is_constructible<U, B*, D const&>::value, "");
static_assert(!std::is_constructible<U, B*, D&>::value, "");
@@ -181,7 +179,7 @@ void test_sfinae_runtime() {
using D = NoCopyMoveDeleter;
using U = std::unique_ptr<A[], D&>;
static_assert(!std::is_constructible<U, A*, D const&>::value, "");
static_assert(std::is_constructible<U, A*, D&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D&>::value, "");
static_assert(!std::is_constructible<U, A*, D&&>::value, "");
static_assert(!std::is_constructible<U, A*, const D&&>::value, "");
@@ -193,8 +191,8 @@ void test_sfinae_runtime() {
{
using D = NoCopyMoveDeleter;
using U = std::unique_ptr<A[], const D&>;
static_assert(std::is_constructible<U, A*, D const&>::value, "");
static_assert(std::is_constructible<U, A*, D&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D const&>::value, "");
static_assert(std::is_nothrow_constructible<U, A*, D&>::value, "");
static_assert(!std::is_constructible<U, A*, D&&>::value, "");
static_assert(!std::is_constructible<U, A*, const D&&>::value, "");
@@ -291,15 +289,38 @@ void test_basic_single() {
}
}
template <bool IsArray>
void test_nullptr() {
#if TEST_STD_VER >= 11
typedef typename std::conditional<!IsArray, A, A[]>::type VT;
{
std::unique_ptr<VT, Deleter<VT> > u(nullptr, Deleter<VT>{});
assert(u.get() == nullptr);
}
{
NCDeleter<VT> d;
std::unique_ptr<VT, NCDeleter<VT>& > u(nullptr, d);
assert(u.get() == nullptr);
}
{
NCConstDeleter<VT> d;
std::unique_ptr<VT, NCConstDeleter<VT> const& > u(nullptr, d);
assert(u.get() == nullptr);
}
#endif
}
int main() {
{
test_basic</*IsArray*/ false>();
test_nullptr<false>();
test_basic_single();
test_sfinae<false>();
test_noexcept<false>();
}
{
test_basic</*IsArray*/ true>();
test_nullptr<true>();
test_sfinae<true>();
test_sfinae_runtime();
test_noexcept<true>();

View File

@@ -35,8 +35,8 @@ void test_basic() {
Deleter d;
assert(d.state() == 0);
{
std::unique_ptr<T, Deleter&> p(0, d);
assert(p.get() == 0);
std::unique_ptr<T, Deleter&> p(nullptr, d);
assert(p.get() == nullptr);
assert(&p.get_deleter() == &d);
}
assert(d.state() == 0);

View File

@@ -16,12 +16,20 @@
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
template <bool IsArray>
void test_basic() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
const int expect_alive = IsArray ? 3 : 1;
#if TEST_STD_VER >= 11
{
using U = std::unique_ptr<VT>;
U u; ((void)u);
ASSERT_NOEXCEPT(u.release());
}
#endif
{
std::unique_ptr<VT> p(newValue<VT>(expect_alive));
assert(A::count == expect_alive);

View File

@@ -16,22 +16,20 @@
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
template <bool IsArray>
void test_basic() {
void test_reset_pointer() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
const int expect_alive = IsArray ? 3 : 1;
#if TEST_STD_VER >= 11
{
std::unique_ptr<VT> p(newValue<VT>(expect_alive));
assert(A::count == expect_alive);
A* i = p.get();
assert(i != nullptr);
p.reset();
assert(A::count == 0);
assert(p.get() == 0);
using U = std::unique_ptr<VT>;
U u; ((void)u);
ASSERT_NOEXCEPT(u.reset((A*)nullptr));
}
assert(A::count == 0);
#endif
{
std::unique_ptr<VT> p(newValue<VT>(expect_alive));
assert(A::count == expect_alive);
@@ -41,11 +39,79 @@ void test_basic() {
assert(A::count == (expect_alive * 2));
p.reset(new_value);
assert(A::count == expect_alive);
assert(p.get() == new_value);
}
assert(A::count == 0);
{
std::unique_ptr<const VT> p(newValue<const VT>(expect_alive));
assert(A::count == expect_alive);
const A* i = p.get();
assert(i != nullptr);
A* new_value = newValue<VT>(expect_alive);
assert(A::count == (expect_alive * 2));
p.reset(new_value);
assert(A::count == expect_alive);
assert(p.get() == new_value);
}
assert(A::count == 0);
}
template <bool IsArray>
void test_reset_nullptr() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
const int expect_alive = IsArray ? 3 : 1;
#if TEST_STD_VER >= 11
{
using U = std::unique_ptr<VT>;
U u; ((void)u);
ASSERT_NOEXCEPT(u.reset(nullptr));
}
#endif
{
std::unique_ptr<VT> p(newValue<VT>(expect_alive));
assert(A::count == expect_alive);
A* i = p.get();
assert(i != nullptr);
p.reset(nullptr);
assert(A::count == 0);
assert(p.get() == nullptr);
}
assert(A::count == 0);
}
template <bool IsArray>
void test_reset_no_arg() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
const int expect_alive = IsArray ? 3 : 1;
#if TEST_STD_VER >= 11
{
using U = std::unique_ptr<VT>;
U u; ((void)u);
ASSERT_NOEXCEPT(u.reset());
}
#endif
{
std::unique_ptr<VT> p(newValue<VT>(expect_alive));
assert(A::count == expect_alive);
A* i = p.get();
assert(i != nullptr);
p.reset();
assert(A::count == 0);
assert(p.get() == nullptr);
}
assert(A::count == 0);
}
int main() {
test_basic</*IsArray*/ false>();
test_basic<true>();
{
test_reset_pointer</*IsArray*/ false>();
test_reset_nullptr<false>();
test_reset_no_arg<false>();
}
{
test_reset_pointer</*IsArray*/true>();
test_reset_nullptr<true>();
test_reset_no_arg<true>();
}
}

View File

@@ -16,6 +16,7 @@
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
struct TT {
@@ -51,6 +52,13 @@ template <bool IsArray>
void test_basic() {
typedef typename std::conditional<IsArray, TT[], TT>::type VT;
const int expect_alive = IsArray ? 5 : 1;
#if TEST_STD_VER >= 11
{
using U = std::unique_ptr<VT, Deleter<VT> >;
U u; ((void)u);
ASSERT_NOEXCEPT(u.swap(u));
}
#endif
{
TT* p1 = newValueInit<VT>(expect_alive, 1);
std::unique_ptr<VT, Deleter<VT> > s1(p1, Deleter<VT>(1));