[libcxx] Add support for benchmark tests using Google Benchmark.
Summary: This patch does the following: 1. Checks in a copy of the Google Benchmark library into the libc++ repo under `utils/google-benchmark`. 2. Teaches libc++ how to build Google Benchmark against both (A) in-tree libc++ and (B) the platforms native STL. 3. Allows performance benchmarks to be built as part of the libc++ build. Building the benchmarks (and Google Benchmark) is off by default. It must be enabled using the CMake option `-DLIBCXX_INCLUDE_BENCHMARKS=ON`. When this option is enabled the tests under `libcxx/benchmarks` can be built using the `libcxx-benchmarks` target. On Linux platforms where libstdc++ is the default STL the CMake option `-DLIBCXX_BUILD_BENCHMARKS_NATIVE_STDLIB=ON` can be used to build each benchmark test against libstdc++ as well. This is useful for comparing performance between standard libraries. Support for benchmarks is currently very minimal. They must be manually run by the user and there is no mechanism for detecting performance regressions. Known Issues: * `-DLIBCXX_INCLUDE_BENCHMARKS=ON` is only supported for Clang, and not GCC, since the `-stdlib=libc++` option is needed to build Google Benchmark. Reviewers: danalbert, dberlin, chandlerc, mclow.lists, jroelofs Subscribers: chandlerc, dberlin, tberghammer, danalbert, srhines, hfinkel Differential Revision: https://reviews.llvm.org/D22240 git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@276049 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
169
utils/google-benchmark/src/string_util.cc
Normal file
169
utils/google-benchmark/src/string_util.cc
Normal file
@@ -0,0 +1,169 @@
|
||||
#include "string_util.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdarg>
|
||||
#include <array>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "arraysize.h"
|
||||
|
||||
namespace benchmark {
|
||||
namespace {
|
||||
|
||||
// kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta.
|
||||
const char kBigSIUnits[] = "kMGTPEZY";
|
||||
// Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi.
|
||||
const char kBigIECUnits[] = "KMGTPEZY";
|
||||
// milli, micro, nano, pico, femto, atto, zepto, yocto.
|
||||
const char kSmallSIUnits[] = "munpfazy";
|
||||
|
||||
// We require that all three arrays have the same size.
|
||||
static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits),
|
||||
"SI and IEC unit arrays must be the same size");
|
||||
static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits),
|
||||
"Small SI and Big SI unit arrays must be the same size");
|
||||
|
||||
static const int64_t kUnitsSize = arraysize(kBigSIUnits);
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
void ToExponentAndMantissa(double val, double thresh, int precision,
|
||||
double one_k, std::string* mantissa,
|
||||
int64_t* exponent) {
|
||||
std::stringstream mantissa_stream;
|
||||
|
||||
if (val < 0) {
|
||||
mantissa_stream << "-";
|
||||
val = -val;
|
||||
}
|
||||
|
||||
// Adjust threshold so that it never excludes things which can't be rendered
|
||||
// in 'precision' digits.
|
||||
const double adjusted_threshold =
|
||||
std::max(thresh, 1.0 / std::pow(10.0, precision));
|
||||
const double big_threshold = adjusted_threshold * one_k;
|
||||
const double small_threshold = adjusted_threshold;
|
||||
|
||||
if (val > big_threshold) {
|
||||
// Positive powers
|
||||
double scaled = val;
|
||||
for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) {
|
||||
scaled /= one_k;
|
||||
if (scaled <= big_threshold) {
|
||||
mantissa_stream << scaled;
|
||||
*exponent = i + 1;
|
||||
*mantissa = mantissa_stream.str();
|
||||
return;
|
||||
}
|
||||
}
|
||||
mantissa_stream << val;
|
||||
*exponent = 0;
|
||||
} else if (val < small_threshold) {
|
||||
// Negative powers
|
||||
double scaled = val;
|
||||
for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) {
|
||||
scaled *= one_k;
|
||||
if (scaled >= small_threshold) {
|
||||
mantissa_stream << scaled;
|
||||
*exponent = -static_cast<int64_t>(i + 1);
|
||||
*mantissa = mantissa_stream.str();
|
||||
return;
|
||||
}
|
||||
}
|
||||
mantissa_stream << val;
|
||||
*exponent = 0;
|
||||
} else {
|
||||
mantissa_stream << val;
|
||||
*exponent = 0;
|
||||
}
|
||||
*mantissa = mantissa_stream.str();
|
||||
}
|
||||
|
||||
std::string ExponentToPrefix(int64_t exponent, bool iec) {
|
||||
if (exponent == 0) return "";
|
||||
|
||||
const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1);
|
||||
if (index >= kUnitsSize) return "";
|
||||
|
||||
const char* array =
|
||||
(exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits);
|
||||
if (iec)
|
||||
return array[index] + std::string("i");
|
||||
else
|
||||
return std::string(1, array[index]);
|
||||
}
|
||||
|
||||
std::string ToBinaryStringFullySpecified(double value, double threshold,
|
||||
int precision) {
|
||||
std::string mantissa;
|
||||
int64_t exponent;
|
||||
ToExponentAndMantissa(value, threshold, precision, 1024.0, &mantissa,
|
||||
&exponent);
|
||||
return mantissa + ExponentToPrefix(exponent, false);
|
||||
}
|
||||
|
||||
void AppendHumanReadable(int n, std::string* str) {
|
||||
std::stringstream ss;
|
||||
// Round down to the nearest SI prefix.
|
||||
ss << "/" << ToBinaryStringFullySpecified(n, 1.0, 0);
|
||||
*str += ss.str();
|
||||
}
|
||||
|
||||
std::string HumanReadableNumber(double n) {
|
||||
// 1.1 means that figures up to 1.1k should be shown with the next unit down;
|
||||
// this softens edge effects.
|
||||
// 1 means that we should show one decimal place of precision.
|
||||
return ToBinaryStringFullySpecified(n, 1.1, 1);
|
||||
}
|
||||
|
||||
std::string StringPrintFImp(const char *msg, va_list args)
|
||||
{
|
||||
// we might need a second shot at this, so pre-emptivly make a copy
|
||||
va_list args_cp;
|
||||
va_copy(args_cp, args);
|
||||
|
||||
// TODO(ericwf): use std::array for first attempt to avoid one memory
|
||||
// allocation guess what the size might be
|
||||
std::array<char, 256> local_buff;
|
||||
std::size_t size = local_buff.size();
|
||||
// 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation in the android-ndk
|
||||
auto ret = vsnprintf(local_buff.data(), size, msg, args_cp);
|
||||
|
||||
va_end(args_cp);
|
||||
|
||||
// handle empty expansion
|
||||
if (ret == 0)
|
||||
return std::string{};
|
||||
if (static_cast<std::size_t>(ret) < size)
|
||||
return std::string(local_buff.data());
|
||||
|
||||
// we did not provide a long enough buffer on our first attempt.
|
||||
// add 1 to size to account for null-byte in size cast to prevent overflow
|
||||
size = static_cast<std::size_t>(ret) + 1;
|
||||
auto buff_ptr = std::unique_ptr<char[]>(new char[size]);
|
||||
// 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation in the android-ndk
|
||||
ret = vsnprintf(buff_ptr.get(), size, msg, args);
|
||||
return std::string(buff_ptr.get());
|
||||
}
|
||||
|
||||
std::string StringPrintF(const char* format, ...)
|
||||
{
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
std::string tmp = StringPrintFImp(format, args);
|
||||
va_end(args);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
void ReplaceAll(std::string* str, const std::string& from,
|
||||
const std::string& to) {
|
||||
std::size_t start = 0;
|
||||
while((start = str->find(from, start)) != std::string::npos) {
|
||||
str->replace(start, from.length(), to);
|
||||
start += to.length();
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace benchmark
|
||||
Reference in New Issue
Block a user