Files
android_external_libvpx/tools_common.c
Jerome Jiang c10833faa6 Test decode and find mismatch in vp9 svc example encoder.
Also write it to opsnr.stt when internal stats is enabled.

Removed some redundant code in vpxenc.c and vp9cx_set_ref.c

Change-Id: I3700137fff0be92a23e4ab75713db72da1dc4076
2019-02-11 20:18:07 -08:00

772 lines
24 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./tools_common.h"
#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER
#include "vpx/vp8cx.h"
#endif
#if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER
#include "vpx/vp8dx.h"
#endif
#if defined(_WIN32) || defined(__OS2__)
#include <io.h>
#include <fcntl.h>
#ifdef __OS2__
#define _setmode setmode
#define _fileno fileno
#define _O_BINARY O_BINARY
#endif
#endif
#define LOG_ERROR(label) \
do { \
const char *l = label; \
va_list ap; \
va_start(ap, fmt); \
if (l) fprintf(stderr, "%s: ", l); \
vfprintf(stderr, fmt, ap); \
fprintf(stderr, "\n"); \
va_end(ap); \
} while (0)
#if CONFIG_ENCODERS
/* Swallow warnings about unused results of fread/fwrite */
static size_t wrap_fread(void *ptr, size_t size, size_t nmemb, FILE *stream) {
return fread(ptr, size, nmemb, stream);
}
#define fread wrap_fread
#endif
FILE *set_binary_mode(FILE *stream) {
(void)stream;
#if defined(_WIN32) || defined(__OS2__)
_setmode(_fileno(stream), _O_BINARY);
#endif
return stream;
}
void die(const char *fmt, ...) {
LOG_ERROR(NULL);
usage_exit();
}
void fatal(const char *fmt, ...) {
LOG_ERROR("Fatal");
exit(EXIT_FAILURE);
}
void warn(const char *fmt, ...) { LOG_ERROR("Warning"); }
void die_codec(vpx_codec_ctx_t *ctx, const char *s) {
const char *detail = vpx_codec_error_detail(ctx);
printf("%s: %s\n", s, vpx_codec_error(ctx));
if (detail) printf(" %s\n", detail);
exit(EXIT_FAILURE);
}
int read_yuv_frame(struct VpxInputContext *input_ctx, vpx_image_t *yuv_frame) {
FILE *f = input_ctx->file;
struct FileTypeDetectionBuffer *detect = &input_ctx->detect;
int plane = 0;
int shortread = 0;
const int bytespp = (yuv_frame->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1;
for (plane = 0; plane < 3; ++plane) {
uint8_t *ptr;
const int w = vpx_img_plane_width(yuv_frame, plane);
const int h = vpx_img_plane_height(yuv_frame, plane);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane) {
case 1:
ptr =
yuv_frame->planes[yuv_frame->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V
: VPX_PLANE_U];
break;
case 2:
ptr =
yuv_frame->planes[yuv_frame->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U
: VPX_PLANE_V];
break;
default: ptr = yuv_frame->planes[plane];
}
for (r = 0; r < h; ++r) {
size_t needed = w * bytespp;
size_t buf_position = 0;
const size_t left = detect->buf_read - detect->position;
if (left > 0) {
const size_t more = (left < needed) ? left : needed;
memcpy(ptr, detect->buf + detect->position, more);
buf_position = more;
needed -= more;
detect->position += more;
}
if (needed > 0) {
shortread |= (fread(ptr + buf_position, 1, needed, f) < needed);
}
ptr += yuv_frame->stride[plane];
}
}
return shortread;
}
#if CONFIG_ENCODERS
static const VpxInterface vpx_encoders[] = {
#if CONFIG_VP8_ENCODER
{ "vp8", VP8_FOURCC, &vpx_codec_vp8_cx },
#endif
#if CONFIG_VP9_ENCODER
{ "vp9", VP9_FOURCC, &vpx_codec_vp9_cx },
#endif
};
int get_vpx_encoder_count(void) {
return sizeof(vpx_encoders) / sizeof(vpx_encoders[0]);
}
const VpxInterface *get_vpx_encoder_by_index(int i) { return &vpx_encoders[i]; }
const VpxInterface *get_vpx_encoder_by_name(const char *name) {
int i;
for (i = 0; i < get_vpx_encoder_count(); ++i) {
const VpxInterface *encoder = get_vpx_encoder_by_index(i);
if (strcmp(encoder->name, name) == 0) return encoder;
}
return NULL;
}
#endif // CONFIG_ENCODERS
#if CONFIG_DECODERS
static const VpxInterface vpx_decoders[] = {
#if CONFIG_VP8_DECODER
{ "vp8", VP8_FOURCC, &vpx_codec_vp8_dx },
#endif
#if CONFIG_VP9_DECODER
{ "vp9", VP9_FOURCC, &vpx_codec_vp9_dx },
#endif
};
int get_vpx_decoder_count(void) {
return sizeof(vpx_decoders) / sizeof(vpx_decoders[0]);
}
const VpxInterface *get_vpx_decoder_by_index(int i) { return &vpx_decoders[i]; }
const VpxInterface *get_vpx_decoder_by_name(const char *name) {
int i;
for (i = 0; i < get_vpx_decoder_count(); ++i) {
const VpxInterface *const decoder = get_vpx_decoder_by_index(i);
if (strcmp(decoder->name, name) == 0) return decoder;
}
return NULL;
}
const VpxInterface *get_vpx_decoder_by_fourcc(uint32_t fourcc) {
int i;
for (i = 0; i < get_vpx_decoder_count(); ++i) {
const VpxInterface *const decoder = get_vpx_decoder_by_index(i);
if (decoder->fourcc == fourcc) return decoder;
}
return NULL;
}
#endif // CONFIG_DECODERS
int vpx_img_plane_width(const vpx_image_t *img, int plane) {
if (plane > 0 && img->x_chroma_shift > 0)
return (img->d_w + 1) >> img->x_chroma_shift;
else
return img->d_w;
}
int vpx_img_plane_height(const vpx_image_t *img, int plane) {
if (plane > 0 && img->y_chroma_shift > 0)
return (img->d_h + 1) >> img->y_chroma_shift;
else
return img->d_h;
}
void vpx_img_write(const vpx_image_t *img, FILE *file) {
int plane;
for (plane = 0; plane < 3; ++plane) {
const unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
const int w = vpx_img_plane_width(img, plane) *
((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1);
const int h = vpx_img_plane_height(img, plane);
int y;
for (y = 0; y < h; ++y) {
fwrite(buf, 1, w, file);
buf += stride;
}
}
}
int vpx_img_read(vpx_image_t *img, FILE *file) {
int plane;
for (plane = 0; plane < 3; ++plane) {
unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
const int w = vpx_img_plane_width(img, plane) *
((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1);
const int h = vpx_img_plane_height(img, plane);
int y;
for (y = 0; y < h; ++y) {
if (fread(buf, 1, w, file) != (size_t)w) return 0;
buf += stride;
}
}
return 1;
}
// TODO(dkovalev) change sse_to_psnr signature: double -> int64_t
double sse_to_psnr(double samples, double peak, double sse) {
static const double kMaxPSNR = 100.0;
if (sse > 0.0) {
const double psnr = 10.0 * log10(samples * peak * peak / sse);
return psnr > kMaxPSNR ? kMaxPSNR : psnr;
} else {
return kMaxPSNR;
}
}
#if CONFIG_ENCODERS
int read_frame(struct VpxInputContext *input_ctx, vpx_image_t *img) {
FILE *f = input_ctx->file;
y4m_input *y4m = &input_ctx->y4m;
int shortread = 0;
if (input_ctx->file_type == FILE_TYPE_Y4M) {
if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
} else {
shortread = read_yuv_frame(input_ctx, img);
}
return !shortread;
}
int file_is_y4m(const char detect[4]) {
if (memcmp(detect, "YUV4", 4) == 0) {
return 1;
}
return 0;
}
int fourcc_is_ivf(const char detect[4]) {
if (memcmp(detect, "DKIF", 4) == 0) {
return 1;
}
return 0;
}
void open_input_file(struct VpxInputContext *input) {
/* Parse certain options from the input file, if possible */
input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
: set_binary_mode(stdin);
if (!input->file) fatal("Failed to open input file");
if (!fseeko(input->file, 0, SEEK_END)) {
/* Input file is seekable. Figure out how long it is, so we can get
* progress info.
*/
input->length = ftello(input->file);
rewind(input->file);
}
/* Default to 1:1 pixel aspect ratio. */
input->pixel_aspect_ratio.numerator = 1;
input->pixel_aspect_ratio.denominator = 1;
/* For RAW input sources, these bytes will applied on the first frame
* in read_frame().
*/
input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
input->detect.position = 0;
if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4,
input->only_i420) >= 0) {
input->file_type = FILE_TYPE_Y4M;
input->width = input->y4m.pic_w;
input->height = input->y4m.pic_h;
input->pixel_aspect_ratio.numerator = input->y4m.par_n;
input->pixel_aspect_ratio.denominator = input->y4m.par_d;
input->framerate.numerator = input->y4m.fps_n;
input->framerate.denominator = input->y4m.fps_d;
input->fmt = input->y4m.vpx_fmt;
input->bit_depth = input->y4m.bit_depth;
} else {
fatal("Unsupported Y4M stream.");
}
} else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
fatal("IVF is not supported as input.");
} else {
input->file_type = FILE_TYPE_RAW;
}
}
void close_input_file(struct VpxInputContext *input) {
fclose(input->file);
if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
}
#endif
// TODO(debargha): Consolidate the functions below into a separate file.
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_img_upshift(vpx_image_t *dst, vpx_image_t *src,
int input_shift) {
// Note the offset is 1 less than half.
const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0;
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt ||
input_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case VPX_IMG_FMT_I42016:
case VPX_IMG_FMT_I42216:
case VPX_IMG_FMT_I44416:
case VPX_IMG_FMT_I44016: break;
default: fatal("Unsupported image conversion"); break;
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
uint16_t *p_src =
(uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) *p_dst++ = (*p_src++ << input_shift) + offset;
}
}
}
static void lowbd_img_upshift(vpx_image_t *dst, vpx_image_t *src,
int input_shift) {
// Note the offset is 1 less than half.
const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0;
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift ||
dst->fmt != src->fmt + VPX_IMG_FMT_HIGHBITDEPTH || input_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case VPX_IMG_FMT_I420:
case VPX_IMG_FMT_I422:
case VPX_IMG_FMT_I444:
case VPX_IMG_FMT_I440: break;
default: fatal("Unsupported image conversion"); break;
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
uint8_t *p_src = src->planes[plane] + y * src->stride[plane];
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) {
*p_dst++ = (*p_src++ << input_shift) + offset;
}
}
}
}
void vpx_img_upshift(vpx_image_t *dst, vpx_image_t *src, int input_shift) {
if (src->fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
highbd_img_upshift(dst, src, input_shift);
} else {
lowbd_img_upshift(dst, src, input_shift);
}
}
void vpx_img_truncate_16_to_8(vpx_image_t *dst, vpx_image_t *src) {
int plane;
if (dst->fmt + VPX_IMG_FMT_HIGHBITDEPTH != src->fmt || dst->d_w != src->d_w ||
dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift) {
fatal("Unsupported image conversion");
}
switch (dst->fmt) {
case VPX_IMG_FMT_I420:
case VPX_IMG_FMT_I422:
case VPX_IMG_FMT_I444:
case VPX_IMG_FMT_I440: break;
default: fatal("Unsupported image conversion"); break;
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
uint16_t *p_src =
(uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane];
for (x = 0; x < w; x++) {
*p_dst++ = (uint8_t)(*p_src++);
}
}
}
}
static void highbd_img_downshift(vpx_image_t *dst, vpx_image_t *src,
int down_shift) {
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt ||
down_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case VPX_IMG_FMT_I42016:
case VPX_IMG_FMT_I42216:
case VPX_IMG_FMT_I44416:
case VPX_IMG_FMT_I44016: break;
default: fatal("Unsupported image conversion"); break;
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
uint16_t *p_src =
(uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) *p_dst++ = *p_src++ >> down_shift;
}
}
}
static void lowbd_img_downshift(vpx_image_t *dst, vpx_image_t *src,
int down_shift) {
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift ||
src->fmt != dst->fmt + VPX_IMG_FMT_HIGHBITDEPTH || down_shift < 0) {
fatal("Unsupported image conversion");
}
switch (dst->fmt) {
case VPX_IMG_FMT_I420:
case VPX_IMG_FMT_I422:
case VPX_IMG_FMT_I444:
case VPX_IMG_FMT_I440: break;
default: fatal("Unsupported image conversion"); break;
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
uint16_t *p_src =
(uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane];
for (x = 0; x < w; x++) {
*p_dst++ = *p_src++ >> down_shift;
}
}
}
}
void vpx_img_downshift(vpx_image_t *dst, vpx_image_t *src, int down_shift) {
if (dst->fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
highbd_img_downshift(dst, src, down_shift);
} else {
lowbd_img_downshift(dst, src, down_shift);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
int compare_img(const vpx_image_t *const img1, const vpx_image_t *const img2) {
uint32_t l_w = img1->d_w;
uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift;
const uint32_t c_h =
(img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift;
uint32_t i;
int match = 1;
match &= (img1->fmt == img2->fmt);
match &= (img1->d_w == img2->d_w);
match &= (img1->d_h == img2->d_h);
#if CONFIG_VP9_HIGHBITDEPTH
if (img1->fmt & VPX_IMG_FMT_HIGHBITDEPTH) {
l_w *= 2;
c_w *= 2;
}
#endif
for (i = 0; i < img1->d_h; ++i)
match &= (memcmp(img1->planes[VPX_PLANE_Y] + i * img1->stride[VPX_PLANE_Y],
img2->planes[VPX_PLANE_Y] + i * img2->stride[VPX_PLANE_Y],
l_w) == 0);
for (i = 0; i < c_h; ++i)
match &= (memcmp(img1->planes[VPX_PLANE_U] + i * img1->stride[VPX_PLANE_U],
img2->planes[VPX_PLANE_U] + i * img2->stride[VPX_PLANE_U],
c_w) == 0);
for (i = 0; i < c_h; ++i)
match &= (memcmp(img1->planes[VPX_PLANE_V] + i * img1->stride[VPX_PLANE_V],
img2->planes[VPX_PLANE_V] + i * img2->stride[VPX_PLANE_V],
c_w) == 0);
return match;
}
#define mmin(a, b) ((a) < (b) ? (a) : (b))
#if CONFIG_VP9_HIGHBITDEPTH
void find_mismatch_high(const vpx_image_t *const img1,
const vpx_image_t *const img2, int yloc[4], int uloc[4],
int vloc[4]) {
uint16_t *plane1, *plane2;
uint32_t stride1, stride2;
const uint32_t bsize = 64;
const uint32_t bsizey = bsize >> img1->y_chroma_shift;
const uint32_t bsizex = bsize >> img1->x_chroma_shift;
const uint32_t c_w =
(img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift;
const uint32_t c_h =
(img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift;
int match = 1;
uint32_t i, j;
yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1;
plane1 = (uint16_t *)img1->planes[VPX_PLANE_Y];
plane2 = (uint16_t *)img2->planes[VPX_PLANE_Y];
stride1 = img1->stride[VPX_PLANE_Y] / 2;
stride2 = img2->stride[VPX_PLANE_Y] / 2;
for (i = 0, match = 1; match && i < img1->d_h; i += bsize) {
for (j = 0; match && j < img1->d_w; j += bsize) {
int k, l;
const int si = mmin(i + bsize, img1->d_h) - i;
const int sj = mmin(j + bsize, img1->d_w) - j;
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(plane1 + (i + k) * stride1 + j + l) !=
*(plane2 + (i + k) * stride2 + j + l)) {
yloc[0] = i + k;
yloc[1] = j + l;
yloc[2] = *(plane1 + (i + k) * stride1 + j + l);
yloc[3] = *(plane2 + (i + k) * stride2 + j + l);
match = 0;
break;
}
}
}
}
}
uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1;
plane1 = (uint16_t *)img1->planes[VPX_PLANE_U];
plane2 = (uint16_t *)img2->planes[VPX_PLANE_U];
stride1 = img1->stride[VPX_PLANE_U] / 2;
stride2 = img2->stride[VPX_PLANE_U] / 2;
for (i = 0, match = 1; match && i < c_h; i += bsizey) {
for (j = 0; match && j < c_w; j += bsizex) {
int k, l;
const int si = mmin(i + bsizey, c_h - i);
const int sj = mmin(j + bsizex, c_w - j);
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(plane1 + (i + k) * stride1 + j + l) !=
*(plane2 + (i + k) * stride2 + j + l)) {
uloc[0] = i + k;
uloc[1] = j + l;
uloc[2] = *(plane1 + (i + k) * stride1 + j + l);
uloc[3] = *(plane2 + (i + k) * stride2 + j + l);
match = 0;
break;
}
}
}
}
}
vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1;
plane1 = (uint16_t *)img1->planes[VPX_PLANE_V];
plane2 = (uint16_t *)img2->planes[VPX_PLANE_V];
stride1 = img1->stride[VPX_PLANE_V] / 2;
stride2 = img2->stride[VPX_PLANE_V] / 2;
for (i = 0, match = 1; match && i < c_h; i += bsizey) {
for (j = 0; match && j < c_w; j += bsizex) {
int k, l;
const int si = mmin(i + bsizey, c_h - i);
const int sj = mmin(j + bsizex, c_w - j);
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(plane1 + (i + k) * stride1 + j + l) !=
*(plane2 + (i + k) * stride2 + j + l)) {
vloc[0] = i + k;
vloc[1] = j + l;
vloc[2] = *(plane1 + (i + k) * stride1 + j + l);
vloc[3] = *(plane2 + (i + k) * stride2 + j + l);
match = 0;
break;
}
}
}
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void find_mismatch(const vpx_image_t *const img1, const vpx_image_t *const img2,
int yloc[4], int uloc[4], int vloc[4]) {
const uint32_t bsize = 64;
const uint32_t bsizey = bsize >> img1->y_chroma_shift;
const uint32_t bsizex = bsize >> img1->x_chroma_shift;
const uint32_t c_w =
(img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift;
const uint32_t c_h =
(img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift;
int match = 1;
uint32_t i, j;
yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1;
for (i = 0, match = 1; match && i < img1->d_h; i += bsize) {
for (j = 0; match && j < img1->d_w; j += bsize) {
int k, l;
const int si = mmin(i + bsize, img1->d_h) - i;
const int sj = mmin(j + bsize, img1->d_w) - j;
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(img1->planes[VPX_PLANE_Y] +
(i + k) * img1->stride[VPX_PLANE_Y] + j + l) !=
*(img2->planes[VPX_PLANE_Y] +
(i + k) * img2->stride[VPX_PLANE_Y] + j + l)) {
yloc[0] = i + k;
yloc[1] = j + l;
yloc[2] = *(img1->planes[VPX_PLANE_Y] +
(i + k) * img1->stride[VPX_PLANE_Y] + j + l);
yloc[3] = *(img2->planes[VPX_PLANE_Y] +
(i + k) * img2->stride[VPX_PLANE_Y] + j + l);
match = 0;
break;
}
}
}
}
}
uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1;
for (i = 0, match = 1; match && i < c_h; i += bsizey) {
for (j = 0; match && j < c_w; j += bsizex) {
int k, l;
const int si = mmin(i + bsizey, c_h - i);
const int sj = mmin(j + bsizex, c_w - j);
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(img1->planes[VPX_PLANE_U] +
(i + k) * img1->stride[VPX_PLANE_U] + j + l) !=
*(img2->planes[VPX_PLANE_U] +
(i + k) * img2->stride[VPX_PLANE_U] + j + l)) {
uloc[0] = i + k;
uloc[1] = j + l;
uloc[2] = *(img1->planes[VPX_PLANE_U] +
(i + k) * img1->stride[VPX_PLANE_U] + j + l);
uloc[3] = *(img2->planes[VPX_PLANE_U] +
(i + k) * img2->stride[VPX_PLANE_U] + j + l);
match = 0;
break;
}
}
}
}
}
vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1;
for (i = 0, match = 1; match && i < c_h; i += bsizey) {
for (j = 0; match && j < c_w; j += bsizex) {
int k, l;
const int si = mmin(i + bsizey, c_h - i);
const int sj = mmin(j + bsizex, c_w - j);
for (k = 0; match && k < si; ++k) {
for (l = 0; match && l < sj; ++l) {
if (*(img1->planes[VPX_PLANE_V] +
(i + k) * img1->stride[VPX_PLANE_V] + j + l) !=
*(img2->planes[VPX_PLANE_V] +
(i + k) * img2->stride[VPX_PLANE_V] + j + l)) {
vloc[0] = i + k;
vloc[1] = j + l;
vloc[2] = *(img1->planes[VPX_PLANE_V] +
(i + k) * img1->stride[VPX_PLANE_V] + j + l);
vloc[3] = *(img2->planes[VPX_PLANE_V] +
(i + k) * img2->stride[VPX_PLANE_V] + j + l);
match = 0;
break;
}
}
}
}
}
}