Files
android_external_libvpx/vp9/encoder/vp9_encodeintra.c
Deb Mukherjee 0742b1e4ae Fixing 8x8/4x4 ADST for intra modes with tx select
This patch allows use of 8x8 and 4x4 ADST correctly for Intra
16x16 modes and Intra 8x8 modes when the block size selected
is smaller than the prediction mode. Also includes some cleanups
and refactoring.

Rebase.

Change-Id: Ie3257bdf07bdb9c6e9476915e3a80183c8fa005a
2012-11-28 16:21:12 -08:00

285 lines
7.7 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vp9_rtcd.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconintra4x4.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/encoder/vp9_encodeintra.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
int vp9_encode_intra(VP9_COMP *cpi, MACROBLOCK *x, int use_16x16_pred) {
int i;
int intra_pred_var = 0;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
(void) cpi;
if (use_16x16_pred) {
mbmi->mode = DC_PRED;
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = INTRA_FRAME;
vp9_encode_intra16x16mby(x);
} else {
for (i = 0; i < 16; i++) {
x->e_mbd.block[i].bmi.as_mode.first = B_DC_PRED;
vp9_encode_intra4x4block(x, i);
}
}
intra_pred_var = vp9_get_mb_ss(x->src_diff);
return intra_pred_var;
}
void vp9_encode_intra4x4block(MACROBLOCK *x, int ib) {
BLOCKD *b = &x->e_mbd.block[ib];
BLOCK *be = &x->block[ib];
TX_TYPE tx_type;
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.context = vp9_find_bpred_context(b);
#endif
#if CONFIG_COMP_INTRA_PRED
if (b->bmi.as_mode.second == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
vp9_intra4x4_predict(b, b->bmi.as_mode.first, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra4x4_predict(b, b->bmi.as_mode.first, b->bmi.as_mode.second,
b->predictor);
}
#endif
vp9_subtract_b(be, b, 16);
tx_type = get_tx_type_4x4(&x->e_mbd, b);
if (tx_type != DCT_DCT) {
vp9_fht(be->src_diff, 32, be->coeff, tx_type, 4);
vp9_ht_quantize_b_4x4(be, b, tx_type);
vp9_ihtllm_c(b->dqcoeff, b->diff, 32, tx_type, 4);
} else {
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b) ;
vp9_inverse_transform_b_4x4(&x->e_mbd, ib, 32);
}
vp9_recon_b(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
}
void vp9_encode_intra4x4mby(MACROBLOCK *mb) {
int i;
for (i = 0; i < 16; i++)
vp9_encode_intra4x4block(mb, i);
return;
}
void vp9_encode_intra16x16mby(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
TX_TYPE tx_type;
#if CONFIG_COMP_INTRA_PRED
if (xd->mode_info_context->mbmi.second_mode == (MB_PREDICTION_MODE)(DC_PRED - 1))
#endif
vp9_build_intra_predictors_mby(xd);
#if CONFIG_COMP_INTRA_PRED
else
vp9_build_comp_intra_predictors_mby(xd);
#endif
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
if (tx_size == TX_16X16) {
vp9_transform_mby_16x16(x);
vp9_quantize_mby_16x16(x);
if (x->optimize)
vp9_optimize_mby_16x16(x);
vp9_inverse_transform_mby_16x16(xd);
} else if (tx_size == TX_8X8) {
vp9_transform_mby_8x8(x);
vp9_quantize_mby_8x8(x);
if (x->optimize)
vp9_optimize_mby_8x8(x);
vp9_inverse_transform_mby_8x8(xd);
} else {
vp9_transform_mby_4x4(x);
vp9_quantize_mby_4x4(x);
if (x->optimize)
vp9_optimize_mby_4x4(x);
vp9_inverse_transform_mby_4x4(xd);
}
vp9_recon_mby(xd);
}
void vp9_encode_intra16x16mbuv(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
#if CONFIG_COMP_INTRA_PRED
if (xd->mode_info_context->mbmi.second_uv_mode == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
vp9_build_intra_predictors_mbuv(xd);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_build_comp_intra_predictors_mbuv(xd);
}
#endif
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
xd->predictor, x->src.uv_stride);
if (tx_size == TX_4X4) {
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
if (x->optimize)
vp9_optimize_mbuv_4x4(x);
vp9_inverse_transform_mbuv_4x4(xd);
} else /* 16x16 or 8x8 */ {
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
if (x->optimize)
vp9_optimize_mbuv_8x8(x);
vp9_inverse_transform_mbuv_8x8(xd);
}
vp9_recon_intra_mbuv(xd);
}
void vp9_encode_intra8x8(MACROBLOCK *x, int ib) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCKD *b = &xd->block[ib];
BLOCK *be = &x->block[ib];
const int iblock[4] = {0, 1, 4, 5};
int i;
TX_TYPE tx_type;
#if CONFIG_COMP_INTRA_PRED
if (b->bmi.as_mode.second == (MB_PREDICTION_MODE)(DC_PRED - 1)) {
#endif
vp9_intra8x8_predict(b, b->bmi.as_mode.first, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra8x8_predict(b, b->bmi.as_mode.first, b->bmi.as_mode.second,
b->predictor);
}
#endif
// generate residual blocks
vp9_subtract_4b_c(be, b, 16);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
int idx = (ib & 0x02) ? (ib + 2) : ib;
tx_type = get_tx_type_8x8(xd, &xd->block[ib]);
if (tx_type != DCT_DCT) {
vp9_fht(be->src_diff, 32, (x->block + idx)->coeff,
tx_type, 8);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
vp9_ihtllm_c(xd->block[idx].dqcoeff, xd->block[ib].diff, 32,
tx_type, 8);
} else {
x->vp9_short_fdct8x8(be->src_diff, (x->block + idx)->coeff, 32);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
vp9_short_idct8x8(xd->block[idx].dqcoeff, xd->block[ib].diff, 32);
}
} else {
for (i = 0; i < 4; i++) {
b = &xd->block[ib + iblock[i]];
be = &x->block[ib + iblock[i]];
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_fht_c(be->src_diff, 32, be->coeff, tx_type, 4);
vp9_ht_quantize_b_4x4(be, b, tx_type);
vp9_ihtllm_c(b->dqcoeff, b->diff, 32, tx_type, 4);
} else {
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b);
vp9_inverse_transform_b_4x4(xd, ib + iblock[i], 32);
}
}
}
// reconstruct submacroblock
for (i = 0; i < 4; i++) {
b = &xd->block[ib + iblock[i]];
vp9_recon_b_c(b->predictor, b->diff, *(b->base_dst) + b->dst,
b->dst_stride);
}
}
void vp9_encode_intra8x8mby(MACROBLOCK *x) {
int i, ib;
for (i = 0; i < 4; i++) {
ib = vp9_i8x8_block[i];
vp9_encode_intra8x8(x, ib);
}
}
void vp9_encode_intra_uv4x4(MACROBLOCK *x, int ib,
int mode, int second) {
BLOCKD *b = &x->e_mbd.block[ib];
BLOCK *be = &x->block[ib];
#if CONFIG_COMP_INTRA_PRED
if (second == -1) {
#endif
vp9_intra_uv4x4_predict(b, mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra_uv4x4_predict(b, mode, second, b->predictor);
}
#endif
vp9_subtract_b(be, b, 8);
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 16);
x->quantize_b_4x4(be, b);
vp9_inverse_transform_b_4x4(&x->e_mbd, ib, 16);
vp9_recon_uv_b_c(b->predictor, b->diff, *(b->base_dst) + b->dst,
b->dst_stride);
}
void vp9_encode_intra8x8mbuv(MACROBLOCK *x) {
int i, ib, mode, second;
BLOCKD *b;
for (i = 0; i < 4; i++) {
ib = vp9_i8x8_block[i];
b = &x->e_mbd.block[ib];
mode = b->bmi.as_mode.first;
#if CONFIG_COMP_INTRA_PRED
second = b->bmi.as_mode.second;
#else
second = -1;
#endif
/*u */
vp9_encode_intra_uv4x4(x, i + 16, mode, second);
/*v */
vp9_encode_intra_uv4x4(x, i + 20, mode, second);
}
}