- Make the SIMD ASM code off by default. Use configure --enable-simd-asm to enable. - Allow MD5 ASM code to be requested even when OpenSSL is handling MD4 checksums. Use configure --enable-md5-asm to enable.
554 lines
24 KiB
C++
554 lines
24 KiB
C++
/*
|
|
* SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
|
|
*
|
|
* Copyright (C) 1996 Andrew Tridgell
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
* Copyright (C) 2004-2020 Wayne Davison
|
|
* Copyright (C) 2020 Jorrit Jongma
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, visit the http://fsf.org website.
|
|
*/
|
|
/*
|
|
* Optimization target for get_checksum1() was the Intel Atom D2700, the
|
|
* slowest CPU in the test set and the most likely to be CPU limited during
|
|
* transfers. The combination of intrinsics was chosen specifically for the
|
|
* most gain on that CPU, other combinations were occasionally slightly
|
|
* faster on the others.
|
|
*
|
|
* While on more modern CPUs transfers are less likely to be CPU limited
|
|
* (at least by this specific function), lower CPU usage is always better.
|
|
* Improvements may still be seen when matching chunks from NVMe storage
|
|
* even on newer CPUs.
|
|
*
|
|
* Benchmarks (in MB/s) C SSE2 SSSE3 AVX2
|
|
* - Intel Atom D2700 550 750 1000 N/A
|
|
* - Intel i7-7700hq 1850 2550 4050 6200
|
|
* - AMD ThreadRipper 2950x 2900 5600 8950 8100
|
|
*
|
|
* Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
|
|
* significantly faster. AVX2 is kept because it's more likely to relieve
|
|
* the bottleneck on the slower CPU.
|
|
*
|
|
* This optimization for get_checksum1() is intentionally limited to x86-64
|
|
* as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
|
|
* the available xmm registers, this optimized version may not be faster than
|
|
* the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
|
|
*
|
|
* This file is compiled using GCC 4.8+/clang 6+'s C++ front end to allow the
|
|
* use of the target attribute, selecting the fastest code path based on
|
|
* dispatch priority (GCC 5) or runtime detection of CPU capabilities (GCC 6+).
|
|
* GCC 4.x are not supported to ease configure.ac logic.
|
|
*/
|
|
|
|
#ifdef __x86_64__ /* { */
|
|
#ifdef __cplusplus /* { */
|
|
|
|
#include "rsync.h"
|
|
|
|
#ifdef USE_ROLL_SIMD /* { */
|
|
|
|
#include <immintrin.h>
|
|
|
|
/* Some clang versions don't like it when you use static with multi-versioned functions: linker errors */
|
|
#ifdef __clang__
|
|
#define MVSTATIC
|
|
#else
|
|
#define MVSTATIC static
|
|
#endif
|
|
|
|
// Missing from the headers on gcc 6 and older, clang 8 and older
|
|
typedef long long __m128i_u __attribute__((__vector_size__(16), __may_alias__, __aligned__(1)));
|
|
typedef long long __m256i_u __attribute__((__vector_size__(32), __may_alias__, __aligned__(1)));
|
|
|
|
/* Compatibility macros to let our SSSE3 algorithm run with only SSE2.
|
|
These used to be neat individual functions with target attributes switching between SSE2 and SSSE3 implementations
|
|
as needed, but though this works perfectly with GCC, clang fails to inline those properly leading to a near 50%
|
|
performance drop - combined with static and inline modifiers gets you linker errors and even compiler crashes...
|
|
*/
|
|
|
|
#define SSE2_INTERLEAVE_ODD_EPI16(a, b) _mm_packs_epi32(_mm_srai_epi32(a, 16), _mm_srai_epi32(b, 16))
|
|
#define SSE2_INTERLEAVE_EVEN_EPI16(a, b) SSE2_INTERLEAVE_ODD_EPI16(_mm_slli_si128(a, 2), _mm_slli_si128(b, 2))
|
|
#define SSE2_MULU_ODD_EPI8(a, b) _mm_mullo_epi16(_mm_srli_epi16(a, 8), _mm_srai_epi16(b, 8))
|
|
#define SSE2_MULU_EVEN_EPI8(a, b) _mm_mullo_epi16(_mm_and_si128(a, _mm_set1_epi16(0xFF)), _mm_srai_epi16(_mm_slli_si128(b, 1), 8))
|
|
|
|
#define SSE2_HADDS_EPI16(a, b) _mm_adds_epi16(SSE2_INTERLEAVE_EVEN_EPI16(a, b), SSE2_INTERLEAVE_ODD_EPI16(a, b))
|
|
#define SSE2_MADDUBS_EPI16(a, b) _mm_adds_epi16(SSE2_MULU_EVEN_EPI8(a, b), SSE2_MULU_ODD_EPI8(a, b))
|
|
|
|
#ifndef USE_ROLL_ASM
|
|
__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }
|
|
#endif
|
|
__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_ssse3_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }
|
|
__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }
|
|
|
|
/*
|
|
Original loop per 4 bytes:
|
|
s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
|
|
s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;
|
|
|
|
SSE2/SSSE3 loop per 32 bytes:
|
|
int16 t1[8];
|
|
int16 t2[8];
|
|
for (int j = 0; j < 8; j++) {
|
|
t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
|
|
t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
|
|
}
|
|
s2 += 32*s1 + (uint32)(
|
|
28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
|
|
t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
|
|
) + 528*CHAR_OFFSET;
|
|
s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
|
|
32*CHAR_OFFSET;
|
|
*/
|
|
__attribute__ ((target("ssse3"))) MVSTATIC int32 get_checksum1_ssse3_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
|
|
{
|
|
if (len > 32) {
|
|
int aligned = ((uintptr_t)buf & 15) == 0;
|
|
|
|
uint32 x[4] = {0};
|
|
x[0] = *ps1;
|
|
__m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
|
|
x[0] = *ps2;
|
|
__m128i ss2 = _mm_loadu_si128((__m128i_u*)x);
|
|
|
|
const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
|
|
__m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);
|
|
|
|
for (; i < (len-32); i+=32) {
|
|
// Load ... 2*[int8*16]
|
|
__m128i in8_1, in8_2;
|
|
if (!aligned) {
|
|
// Synonymous with _mm_loadu_si128 on all but a handful of old CPUs
|
|
in8_1 = _mm_lddqu_si128((__m128i_u*)&buf[i]);
|
|
in8_2 = _mm_lddqu_si128((__m128i_u*)&buf[i + 16]);
|
|
} else {
|
|
in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
|
|
in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
|
|
}
|
|
|
|
// (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
|
|
// Fastest, even though multiply by 1
|
|
__m128i mul_one = _mm_set1_epi8(1);
|
|
__m128i add16_1 = _mm_maddubs_epi16(mul_one, in8_1);
|
|
__m128i add16_2 = _mm_maddubs_epi16(mul_one, in8_2);
|
|
|
|
// (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
|
|
__m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
|
|
__m128i mul_add16_1 = _mm_maddubs_epi16(mul_const, in8_1);
|
|
__m128i mul_add16_2 = _mm_maddubs_epi16(mul_const, in8_2);
|
|
|
|
// s2 += 32*s1
|
|
ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));
|
|
|
|
// [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
// Shifting left, then shifting right again and shuffling (rather than just
|
|
// shifting right as with mul32 below) to cheaply end up with the correct sign
|
|
// extension as we go from int16 to int32.
|
|
__m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
|
|
sum_add32 = _mm_srai_epi32(sum_add32, 16);
|
|
sum_add32 = _mm_shuffle_epi32(sum_add32, 3);
|
|
|
|
// [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
__m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
|
|
sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
|
|
sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);
|
|
|
|
// s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
|
|
ss1 = _mm_add_epi32(ss1, sum_add32);
|
|
|
|
// s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
|
|
ss2 = _mm_add_epi32(ss2, sum_mul_add32);
|
|
|
|
// [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
|
|
// We could've combined this with generating sum_add32 above and
|
|
// save an instruction but benchmarking shows that as being slower
|
|
__m128i add16 = _mm_hadds_epi16(add16_1, add16_2);
|
|
|
|
// [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
|
|
__m128i mul32 = _mm_madd_epi16(add16, mul_t1);
|
|
|
|
// [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
|
|
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
|
|
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));
|
|
|
|
// s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
|
|
ss2 = _mm_add_epi32(ss2, mul32);
|
|
|
|
#if CHAR_OFFSET != 0
|
|
// s1 += 32*CHAR_OFFSET
|
|
__m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
|
|
ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
|
|
|
|
// s2 += 528*CHAR_OFFSET
|
|
char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
|
|
ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
|
|
#endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i_u*)x, ss1);
|
|
*ps1 = x[0];
|
|
_mm_store_si128((__m128i_u*)x, ss2);
|
|
*ps2 = x[0];
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
Same as SSSE3 version, but using macros defined above to emulate SSSE3 calls that are not available with SSE2.
|
|
For GCC-only the SSE2 and SSSE3 versions could be a single function calling other functions with the right
|
|
target attributes to emulate SSSE3 calls on SSE2 if needed, but clang doesn't inline those properly leading
|
|
to a near 50% performance drop.
|
|
*/
|
|
__attribute__ ((target("sse2"))) MVSTATIC int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
|
|
{
|
|
if (len > 32) {
|
|
int aligned = ((uintptr_t)buf & 15) == 0;
|
|
|
|
uint32 x[4] = {0};
|
|
x[0] = *ps1;
|
|
__m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
|
|
x[0] = *ps2;
|
|
__m128i ss2 = _mm_loadu_si128((__m128i_u*)x);
|
|
|
|
const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
|
|
__m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);
|
|
|
|
for (; i < (len-32); i+=32) {
|
|
// Load ... 2*[int8*16]
|
|
__m128i in8_1, in8_2;
|
|
if (!aligned) {
|
|
in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]);
|
|
in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]);
|
|
} else {
|
|
in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
|
|
in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
|
|
}
|
|
|
|
// (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
|
|
// Fastest, even though multiply by 1
|
|
__m128i mul_one = _mm_set1_epi8(1);
|
|
__m128i add16_1 = SSE2_MADDUBS_EPI16(mul_one, in8_1);
|
|
__m128i add16_2 = SSE2_MADDUBS_EPI16(mul_one, in8_2);
|
|
|
|
// (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
|
|
__m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
|
|
__m128i mul_add16_1 = SSE2_MADDUBS_EPI16(mul_const, in8_1);
|
|
__m128i mul_add16_2 = SSE2_MADDUBS_EPI16(mul_const, in8_2);
|
|
|
|
// s2 += 32*s1
|
|
ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));
|
|
|
|
// [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
// Shifting left, then shifting right again and shuffling (rather than just
|
|
// shifting right as with mul32 below) to cheaply end up with the correct sign
|
|
// extension as we go from int16 to int32.
|
|
__m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
|
|
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
|
|
sum_add32 = _mm_srai_epi32(sum_add32, 16);
|
|
sum_add32 = _mm_shuffle_epi32(sum_add32, 3);
|
|
|
|
// [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
__m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
|
|
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
|
|
sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
|
|
sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);
|
|
|
|
// s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
|
|
ss1 = _mm_add_epi32(ss1, sum_add32);
|
|
|
|
// s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
|
|
ss2 = _mm_add_epi32(ss2, sum_mul_add32);
|
|
|
|
// [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
|
|
// We could've combined this with generating sum_add32 above and
|
|
// save an instruction but benchmarking shows that as being slower
|
|
__m128i add16 = SSE2_HADDS_EPI16(add16_1, add16_2);
|
|
|
|
// [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
|
|
__m128i mul32 = _mm_madd_epi16(add16, mul_t1);
|
|
|
|
// [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
|
|
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
|
|
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));
|
|
|
|
// s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
|
|
ss2 = _mm_add_epi32(ss2, mul32);
|
|
|
|
#if CHAR_OFFSET != 0
|
|
// s1 += 32*CHAR_OFFSET
|
|
__m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
|
|
ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
|
|
|
|
// s2 += 528*CHAR_OFFSET
|
|
char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
|
|
ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
|
|
#endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i_u*)x, ss1);
|
|
*ps1 = x[0];
|
|
_mm_store_si128((__m128i_u*)x, ss2);
|
|
*ps2 = x[0];
|
|
}
|
|
return i;
|
|
}
|
|
|
|
#ifdef USE_ROLL_ASM /* { */
|
|
|
|
extern "C" __attribute__ ((target("avx2"))) int32 get_checksum1_avx2_asm(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2);
|
|
|
|
#else /* } { */
|
|
|
|
/*
|
|
AVX2 loop per 64 bytes:
|
|
int16 t1[16];
|
|
int16 t2[16];
|
|
for (int j = 0; j < 16; j++) {
|
|
t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
|
|
t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
|
|
}
|
|
s2 += 64*s1 + (uint32)(
|
|
60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
|
|
t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
|
|
) + 2080*CHAR_OFFSET;
|
|
s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
|
|
64*CHAR_OFFSET;
|
|
*/
|
|
|
|
__attribute__ ((target("avx2"))) MVSTATIC int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
|
|
{
|
|
if (len > 64) {
|
|
|
|
uint32 x[4] = {0};
|
|
__m128i ss1 = _mm_cvtsi32_si128(*ps1);
|
|
__m128i ss2 = _mm_cvtsi32_si128(*ps2);
|
|
|
|
const char mul_t1_buf[16] = {60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0};
|
|
__m128i tmp = _mm_load_si128((__m128i*) mul_t1_buf);
|
|
__m256i mul_t1 = _mm256_cvtepu8_epi16(tmp);
|
|
__m256i mul_const = _mm256_broadcastd_epi32(_mm_cvtsi32_si128(4 | (3 << 8) | (2 << 16) | (1 << 24)));
|
|
__m256i mul_one;
|
|
mul_one = _mm256_abs_epi8(_mm256_cmpeq_epi16(mul_one,mul_one)); // set all vector elements to 1
|
|
|
|
for (; i < (len-64); i+=64) {
|
|
// Load ... 4*[int8*16]
|
|
__m256i in8_1, in8_2;
|
|
__m128i in8_1_low, in8_2_low, in8_1_high, in8_2_high;
|
|
in8_1_low = _mm_loadu_si128((__m128i_u*)&buf[i]);
|
|
in8_2_low = _mm_loadu_si128((__m128i_u*)&buf[i+16]);
|
|
in8_1_high = _mm_loadu_si128((__m128i_u*)&buf[i+32]);
|
|
in8_2_high = _mm_loadu_si128((__m128i_u*)&buf[i+48]);
|
|
in8_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(in8_1_low), in8_1_high,1);
|
|
in8_2 = _mm256_inserti128_si256(_mm256_castsi128_si256(in8_2_low), in8_2_high,1);
|
|
|
|
// (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
|
|
// Fastest, even though multiply by 1
|
|
__m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1);
|
|
__m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2);
|
|
|
|
// (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
|
|
__m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1);
|
|
__m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2);
|
|
|
|
// s2 += 64*s1
|
|
ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 6));
|
|
|
|
// [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
__m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2);
|
|
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_srli_epi32(sum_add32, 16));
|
|
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_srli_si256(sum_add32, 4));
|
|
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_srli_si256(sum_add32, 8));
|
|
|
|
// [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
|
|
__m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2);
|
|
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_srli_epi32(sum_mul_add32, 16));
|
|
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_srli_si256(sum_mul_add32, 4));
|
|
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_srli_si256(sum_mul_add32, 8));
|
|
|
|
// s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
|
|
__m128i sum_add32_hi = _mm256_extracti128_si256(sum_add32, 0x1);
|
|
ss1 = _mm_add_epi32(ss1, _mm256_castsi256_si128(sum_add32));
|
|
ss1 = _mm_add_epi32(ss1, sum_add32_hi);
|
|
|
|
// s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
|
|
__m128i sum_mul_add32_hi = _mm256_extracti128_si256(sum_mul_add32, 0x1);
|
|
ss2 = _mm_add_epi32(ss2, _mm256_castsi256_si128(sum_mul_add32));
|
|
ss2 = _mm_add_epi32(ss2, sum_mul_add32_hi);
|
|
|
|
// [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
|
|
// We could've combined this with generating sum_add32 above and
|
|
// save an instruction but benchmarking shows that as being slower
|
|
__m256i add16 = _mm256_hadds_epi16(add16_1, add16_2);
|
|
|
|
// [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
|
|
__m256i mul32 = _mm256_madd_epi16(add16, mul_t1);
|
|
|
|
// [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
|
|
mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4));
|
|
mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8));
|
|
// prefetch 2 cacheline ahead
|
|
_mm_prefetch(&buf[i + 160], _MM_HINT_T0);
|
|
|
|
// s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
|
|
__m128i mul32_hi = _mm256_extracti128_si256(mul32, 0x1);
|
|
ss2 = _mm_add_epi32(ss2, _mm256_castsi256_si128(mul32));
|
|
ss2 = _mm_add_epi32(ss2, mul32_hi);
|
|
|
|
#if CHAR_OFFSET != 0
|
|
// s1 += 32*CHAR_OFFSET
|
|
__m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
|
|
ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
|
|
|
|
// s2 += 528*CHAR_OFFSET
|
|
char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
|
|
ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
|
|
#endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i_u*)x, ss1);
|
|
*ps1 = x[0];
|
|
_mm_store_si128((__m128i_u*)x, ss2);
|
|
*ps2 = x[0];
|
|
}
|
|
return i;
|
|
}
|
|
|
|
#endif /* } !USE_ROLL_ASM */
|
|
|
|
static int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
|
|
{
|
|
uint32 s1 = *ps1;
|
|
uint32 s2 = *ps2;
|
|
for (; i < (len-4); i+=4) {
|
|
s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
|
|
s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET);
|
|
}
|
|
for (; i < len; i++) {
|
|
s1 += (buf[i]+CHAR_OFFSET); s2 += s1;
|
|
}
|
|
*ps1 = s1;
|
|
*ps2 = s2;
|
|
return i;
|
|
}
|
|
|
|
/* With GCC 10 putting this implementation inside 'extern "C"' causes an
|
|
assembler error. That worked fine on GCC 5-9 and clang 6-10...
|
|
*/
|
|
static inline uint32 get_checksum1_cpp(char *buf1, int32 len)
|
|
{
|
|
int32 i = 0;
|
|
uint32 s1 = 0;
|
|
uint32 s2 = 0;
|
|
|
|
// multiples of 64 bytes using AVX2 (if available)
|
|
#ifdef USE_ROLL_ASM
|
|
i = get_checksum1_avx2_asm((schar*)buf1, len, i, &s1, &s2);
|
|
#else
|
|
i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2);
|
|
#endif
|
|
|
|
// multiples of 32 bytes using SSSE3 (if available)
|
|
i = get_checksum1_ssse3_32((schar*)buf1, len, i, &s1, &s2);
|
|
|
|
// multiples of 32 bytes using SSE2 (if available)
|
|
i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2);
|
|
|
|
// whatever is left
|
|
i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2);
|
|
|
|
return (s1 & 0xffff) + (s2 << 16);
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
uint32 get_checksum1(char *buf1, int32 len)
|
|
{
|
|
return get_checksum1_cpp(buf1, len);
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
#ifdef BENCHMARK_SIMD_CHECKSUM1
|
|
#pragma clang optimize off
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("O0")
|
|
|
|
#define ROUNDS 1024
|
|
#define BLOCK_LEN 1024*1024
|
|
|
|
#ifndef CLOCK_MONOTONIC_RAW
|
|
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC
|
|
#endif
|
|
|
|
static void benchmark(const char* desc, int32 (*func)(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2), schar* buf, int32 len) {
|
|
struct timespec start, end;
|
|
uint64_t us;
|
|
uint32_t cs, s1, s2;
|
|
int i, next;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
|
|
for (i = 0; i < ROUNDS; i++) {
|
|
s1 = s2 = 0;
|
|
next = func((schar*)buf, len, 0, &s1, &s2);
|
|
get_checksum1_default_1((schar*)buf, len, next, &s1, &s2);
|
|
}
|
|
clock_gettime(CLOCK_MONOTONIC_RAW, &end);
|
|
us = next == 0 ? 0 : (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;
|
|
cs = next == 0 ? 0 : (s1 & 0xffff) + (s2 << 16);
|
|
printf("%-5s :: %5.0f MB/s :: %08x\n", desc, us ? (float)(len / (1024 * 1024) * ROUNDS) / ((float)us / 1000000.0f) : 0, cs);
|
|
}
|
|
|
|
static int32 get_checksum1_auto(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
|
|
uint32 cs = get_checksum1((char*)buf, len);
|
|
*ps1 = cs & 0xffff;
|
|
*ps2 = cs >> 16;
|
|
return len;
|
|
}
|
|
|
|
int main() {
|
|
int i;
|
|
unsigned char* buf = (unsigned char*)aligned_alloc(64,BLOCK_LEN);
|
|
for (i = 0; i < BLOCK_LEN; i++) buf[i] = (i + (i % 3) + (i % 11)) % 256;
|
|
|
|
benchmark("Auto", get_checksum1_auto, (schar*)buf, BLOCK_LEN);
|
|
benchmark("Raw-C", get_checksum1_default_1, (schar*)buf, BLOCK_LEN);
|
|
benchmark("SSE2", get_checksum1_sse2_32, (schar*)buf, BLOCK_LEN);
|
|
benchmark("SSSE3", get_checksum1_ssse3_32, (schar*)buf, BLOCK_LEN);
|
|
#ifdef USE_ROLL_ASM
|
|
benchmark("AVX2-ASM", get_checksum1_avx2_asm, (schar*)buf, BLOCK_LEN);
|
|
#else
|
|
benchmark("AVX2", get_checksum1_avx2_64, (schar*)buf, BLOCK_LEN);
|
|
#endif
|
|
|
|
free(buf);
|
|
return 0;
|
|
}
|
|
|
|
#pragma GCC pop_options
|
|
#pragma clang optimize on
|
|
#endif /* BENCHMARK_SIMD_CHECKSUM1 */
|
|
|
|
#endif /* } USE_ROLL_SIMD */
|
|
#endif /* } __cplusplus */
|
|
#endif /* } __x86_64__ */
|