- Silence a couple warnings for less-common builds. - Use a better impossible-failure idiom than assert(0).
529 lines
13 KiB
C
529 lines
13 KiB
C
/*
|
|
* Functions for looking up the remote name or addr of a socket.
|
|
*
|
|
* Copyright (C) 1992-2001 Andrew Tridgell <tridge@samba.org>
|
|
* Copyright (C) 2001, 2002 Martin Pool <mbp@samba.org>
|
|
* Copyright (C) 2002-2020 Wayne Davison
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, visit the http://fsf.org website.
|
|
*/
|
|
|
|
/*
|
|
* This file is now converted to use the new-style getaddrinfo()
|
|
* interface, which supports IPv6 but is also supported on recent
|
|
* IPv4-only machines. On systems that don't have that interface, we
|
|
* emulate it using the KAME implementation.
|
|
*/
|
|
|
|
#include "rsync.h"
|
|
#include "itypes.h"
|
|
|
|
extern int am_daemon;
|
|
|
|
static const char default_name[] = "UNKNOWN";
|
|
static const char proxyv2sig[] = "\r\n\r\n\0\r\nQUIT\n";
|
|
|
|
static char ipaddr_buf[100];
|
|
|
|
#define PROXY_V2_SIG_SIZE ((int)sizeof proxyv2sig - 1)
|
|
#define PROXY_V2_HEADER_SIZE (PROXY_V2_SIG_SIZE + 1 + 1 + 2)
|
|
|
|
#define CMD_LOCAL 0
|
|
#define CMD_PROXY 1
|
|
|
|
#define PROXY_FAM_TCPv4 0x11
|
|
#define PROXY_FAM_TCPv6 0x21
|
|
|
|
#define GET_SOCKADDR_FAMILY(ss) ((struct sockaddr*)ss)->sa_family
|
|
|
|
static void client_sockaddr(int fd, struct sockaddr_storage *ss, socklen_t *ss_len);
|
|
static int check_name(const char *ipaddr, const struct sockaddr_storage *ss, char *name_buf, size_t name_buf_size);
|
|
static int valid_ipaddr(const char *s);
|
|
|
|
/* Return the IP addr of the client as a string. */
|
|
char *client_addr(int fd)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
socklen_t length = sizeof ss;
|
|
|
|
if (*ipaddr_buf)
|
|
return ipaddr_buf;
|
|
|
|
if (am_daemon < 0) { /* daemon over --rsh mode */
|
|
char *env_str;
|
|
strlcpy(ipaddr_buf, "0.0.0.0", sizeof ipaddr_buf);
|
|
if ((env_str = getenv("REMOTE_HOST")) != NULL
|
|
|| (env_str = getenv("SSH_CONNECTION")) != NULL
|
|
|| (env_str = getenv("SSH_CLIENT")) != NULL
|
|
|| (env_str = getenv("SSH2_CLIENT")) != NULL) {
|
|
char *p;
|
|
strlcpy(ipaddr_buf, env_str, sizeof ipaddr_buf);
|
|
/* Truncate the value to just the IP address. */
|
|
if ((p = strchr(ipaddr_buf, ' ')) != NULL)
|
|
*p = '\0';
|
|
}
|
|
if (valid_ipaddr(ipaddr_buf))
|
|
return ipaddr_buf;
|
|
}
|
|
|
|
client_sockaddr(fd, &ss, &length);
|
|
getnameinfo((struct sockaddr *)&ss, length, ipaddr_buf, sizeof ipaddr_buf, NULL, 0, NI_NUMERICHOST);
|
|
|
|
return ipaddr_buf;
|
|
}
|
|
|
|
|
|
/**
|
|
* Return the DNS name of the client.
|
|
*
|
|
* The name is statically cached so that repeated lookups are quick,
|
|
* so there is a limit of one lookup per customer.
|
|
*
|
|
* If anything goes wrong, including the name->addr->name check, then
|
|
* we just use "UNKNOWN", so you can use that value in hosts allow
|
|
* lines.
|
|
*
|
|
* After translation from sockaddr to name we do a forward lookup to
|
|
* make sure nobody is spoofing PTR records.
|
|
**/
|
|
char *client_name(const char *ipaddr)
|
|
{
|
|
static char name_buf[100];
|
|
char port_buf[100];
|
|
struct sockaddr_storage ss;
|
|
socklen_t ss_len;
|
|
struct addrinfo hint, *answer;
|
|
int err;
|
|
|
|
if (*name_buf)
|
|
return name_buf;
|
|
|
|
strlcpy(name_buf, default_name, sizeof name_buf);
|
|
|
|
if (strcmp(ipaddr, "0.0.0.0") == 0)
|
|
return name_buf;
|
|
|
|
memset(&ss, 0, sizeof ss);
|
|
memset(&hint, 0, sizeof hint);
|
|
|
|
#ifdef AI_NUMERICHOST
|
|
hint.ai_flags = AI_NUMERICHOST;
|
|
#endif
|
|
hint.ai_socktype = SOCK_STREAM;
|
|
|
|
if ((err = getaddrinfo(ipaddr, NULL, &hint, &answer)) != 0) {
|
|
rprintf(FLOG, "malformed address %s: %s\n", ipaddr, gai_strerror(err));
|
|
return name_buf;
|
|
}
|
|
|
|
switch (answer->ai_family) {
|
|
case AF_INET:
|
|
ss_len = sizeof (struct sockaddr_in);
|
|
memcpy(&ss, answer->ai_addr, ss_len);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ss_len = sizeof (struct sockaddr_in6);
|
|
memcpy(&ss, answer->ai_addr, ss_len);
|
|
break;
|
|
#endif
|
|
default:
|
|
NOISY_DEATH("Unknown ai_family value");
|
|
}
|
|
freeaddrinfo(answer);
|
|
|
|
/* reverse lookup */
|
|
err = getnameinfo((struct sockaddr*)&ss, ss_len, name_buf, sizeof name_buf,
|
|
port_buf, sizeof port_buf, NI_NAMEREQD | NI_NUMERICSERV);
|
|
if (err) {
|
|
strlcpy(name_buf, default_name, sizeof name_buf);
|
|
rprintf(FLOG, "name lookup failed for %s: %s\n", ipaddr, gai_strerror(err));
|
|
} else
|
|
check_name(ipaddr, &ss, name_buf, sizeof name_buf);
|
|
|
|
return name_buf;
|
|
}
|
|
|
|
|
|
/* Try to read a proxy protocol header (V1 or V2). Returns 1 on success or 0 on failure. */
|
|
int read_proxy_protocol_header(int fd)
|
|
{
|
|
union {
|
|
struct {
|
|
char line[108];
|
|
} v1;
|
|
struct {
|
|
char sig[PROXY_V2_SIG_SIZE];
|
|
char ver_cmd;
|
|
char fam;
|
|
char len[2];
|
|
union {
|
|
struct {
|
|
char src_addr[4];
|
|
char dst_addr[4];
|
|
char src_port[2];
|
|
char dst_port[2];
|
|
} ip4;
|
|
struct {
|
|
char src_addr[16];
|
|
char dst_addr[16];
|
|
char src_port[2];
|
|
char dst_port[2];
|
|
} ip6;
|
|
struct {
|
|
char src_addr[108];
|
|
char dst_addr[108];
|
|
} unx;
|
|
} addr;
|
|
} v2;
|
|
} hdr;
|
|
|
|
read_buf(fd, (char*)&hdr, PROXY_V2_SIG_SIZE);
|
|
|
|
if (memcmp(hdr.v2.sig, proxyv2sig, PROXY_V2_SIG_SIZE) == 0) { /* Proxy V2 */
|
|
int ver, cmd, size;
|
|
|
|
read_buf(fd, (char*)&hdr + PROXY_V2_SIG_SIZE, PROXY_V2_HEADER_SIZE - PROXY_V2_SIG_SIZE);
|
|
|
|
ver = (hdr.v2.ver_cmd & 0xf0) >> 4;
|
|
cmd = (hdr.v2.ver_cmd & 0x0f);
|
|
size = (hdr.v2.len[0] << 8) + hdr.v2.len[1];
|
|
|
|
if (ver != 2 || size + PROXY_V2_HEADER_SIZE > (int)sizeof hdr)
|
|
return 0;
|
|
|
|
/* Grab all the remaining data in the binary request. */
|
|
read_buf(fd, (char*)&hdr + PROXY_V2_HEADER_SIZE, size);
|
|
|
|
switch (cmd) {
|
|
case CMD_PROXY:
|
|
switch (hdr.v2.fam) {
|
|
case PROXY_FAM_TCPv4:
|
|
if (size != sizeof hdr.v2.addr.ip4)
|
|
return 0;
|
|
inet_ntop(AF_INET, hdr.v2.addr.ip4.src_addr, ipaddr_buf, sizeof ipaddr_buf);
|
|
return valid_ipaddr(ipaddr_buf);
|
|
case PROXY_FAM_TCPv6:
|
|
if (size != sizeof hdr.v2.addr.ip6)
|
|
return 0;
|
|
inet_ntop(AF_INET6, hdr.v2.addr.ip6.src_addr, ipaddr_buf, sizeof ipaddr_buf);
|
|
return valid_ipaddr(ipaddr_buf);
|
|
default:
|
|
break;
|
|
}
|
|
/* For an unsupported protocol we'll ignore the proxy data (leaving ipaddr_buf unset)
|
|
* and accept the connection, which will get handled as a normal socket addr. */
|
|
return 1;
|
|
case CMD_LOCAL:
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (memcmp(hdr.v1.line, "PROXY", 5) == 0) { /* Proxy V1 */
|
|
char *endc, *sp, *p = hdr.v1.line + PROXY_V2_SIG_SIZE;
|
|
int port_chk;
|
|
|
|
*p = '\0';
|
|
if (!strchr(hdr.v1.line, '\n')) {
|
|
while (1) {
|
|
read_buf(fd, p, 1);
|
|
if (*p++ == '\n')
|
|
break;
|
|
if (p - hdr.v1.line >= (int)sizeof hdr.v1.line - 1)
|
|
return 0;
|
|
}
|
|
*p = '\0';
|
|
}
|
|
|
|
endc = strchr(hdr.v1.line, '\r');
|
|
if (!endc || endc[1] != '\n' || endc[2])
|
|
return 0;
|
|
*endc = '\0';
|
|
|
|
p = hdr.v1.line + 5;
|
|
|
|
if (!isSpace(p++))
|
|
return 0;
|
|
if (strncmp(p, "TCP4", 4) == 0)
|
|
p += 4;
|
|
else if (strncmp(p, "TCP6", 4) == 0)
|
|
p += 4;
|
|
else if (strncmp(p, "UNKNOWN", 7) == 0)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
|
|
if (!isSpace(p++))
|
|
return 0;
|
|
|
|
if ((sp = strchr(p, ' ')) == NULL)
|
|
return 0;
|
|
*sp = '\0';
|
|
if (!valid_ipaddr(p))
|
|
return 0;
|
|
strlcpy(ipaddr_buf, p, sizeof ipaddr_buf); /* It will always fit when valid. */
|
|
|
|
p = sp + 1;
|
|
if ((sp = strchr(p, ' ')) == NULL)
|
|
return 0;
|
|
*sp = '\0';
|
|
if (!valid_ipaddr(p))
|
|
return 0;
|
|
/* Ignore destination address. */
|
|
|
|
p = sp + 1;
|
|
if ((sp = strchr(p, ' ')) == NULL)
|
|
return 0;
|
|
*sp = '\0';
|
|
port_chk = strtol(p, &endc, 10);
|
|
if (*endc || port_chk == 0)
|
|
return 0;
|
|
/* Ignore source port. */
|
|
|
|
p = sp + 1;
|
|
port_chk = strtol(p, &endc, 10);
|
|
if (*endc || port_chk == 0)
|
|
return 0;
|
|
/* Ignore destination port. */
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Get the sockaddr for the client.
|
|
*
|
|
* If it comes in as an ipv4 address mapped into IPv6 format then we
|
|
* convert it back to a regular IPv4.
|
|
**/
|
|
static void client_sockaddr(int fd, struct sockaddr_storage *ss, socklen_t *ss_len)
|
|
{
|
|
memset(ss, 0, sizeof *ss);
|
|
|
|
if (getpeername(fd, (struct sockaddr *) ss, ss_len)) {
|
|
/* FIXME: Can we really not continue? */
|
|
rsyserr(FLOG, errno, "getpeername on fd%d failed", fd);
|
|
exit_cleanup(RERR_SOCKETIO);
|
|
}
|
|
|
|
#ifdef INET6
|
|
if (GET_SOCKADDR_FAMILY(ss) == AF_INET6
|
|
&& IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)ss)->sin6_addr)) {
|
|
/* OK, so ss is in the IPv6 family, but it is really
|
|
* an IPv4 address: something like
|
|
* "::ffff:10.130.1.2". If we use it as-is, then the
|
|
* reverse lookup might fail or perhaps something else
|
|
* bad might happen. So instead we convert it to an
|
|
* equivalent address in the IPv4 address family. */
|
|
struct sockaddr_in6 sin6;
|
|
struct sockaddr_in *sin;
|
|
|
|
memcpy(&sin6, ss, sizeof sin6);
|
|
sin = (struct sockaddr_in *)ss;
|
|
memset(sin, 0, sizeof *sin);
|
|
sin->sin_family = AF_INET;
|
|
*ss_len = sizeof (struct sockaddr_in);
|
|
#ifdef HAVE_SOCKADDR_IN_LEN
|
|
sin->sin_len = *ss_len;
|
|
#endif
|
|
sin->sin_port = sin6.sin6_port;
|
|
|
|
/* There is a macro to extract the mapped part
|
|
* (IN6_V4MAPPED_TO_SINADDR ?), but it does not seem
|
|
* to be present in the Linux headers. */
|
|
memcpy(&sin->sin_addr, &sin6.sin6_addr.s6_addr[12], sizeof sin->sin_addr);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Compare an addrinfo from the resolver to a sockinfo.
|
|
*
|
|
* Like strcmp, returns 0 for identical.
|
|
**/
|
|
static int compare_addrinfo_sockaddr(const struct addrinfo *ai, const struct sockaddr_storage *ss)
|
|
{
|
|
int ss_family = GET_SOCKADDR_FAMILY(ss);
|
|
const char fn[] = "compare_addrinfo_sockaddr";
|
|
|
|
if (ai->ai_family != ss_family) {
|
|
rprintf(FLOG, "%s: response family %d != %d\n",
|
|
fn, ai->ai_family, ss_family);
|
|
return 1;
|
|
}
|
|
|
|
/* The comparison method depends on the particular AF. */
|
|
if (ss_family == AF_INET) {
|
|
const struct sockaddr_in *sin1, *sin2;
|
|
|
|
sin1 = (const struct sockaddr_in *) ss;
|
|
sin2 = (const struct sockaddr_in *) ai->ai_addr;
|
|
|
|
return memcmp(&sin1->sin_addr, &sin2->sin_addr, sizeof sin1->sin_addr);
|
|
}
|
|
|
|
#ifdef INET6
|
|
if (ss_family == AF_INET6) {
|
|
const struct sockaddr_in6 *sin1, *sin2;
|
|
|
|
sin1 = (const struct sockaddr_in6 *) ss;
|
|
sin2 = (const struct sockaddr_in6 *) ai->ai_addr;
|
|
|
|
if (ai->ai_addrlen < (int)sizeof (struct sockaddr_in6)) {
|
|
rprintf(FLOG, "%s: too short sockaddr_in6; length=%d\n",
|
|
fn, (int)ai->ai_addrlen);
|
|
return 1;
|
|
}
|
|
|
|
if (memcmp(&sin1->sin6_addr, &sin2->sin6_addr, sizeof sin1->sin6_addr))
|
|
return 1;
|
|
|
|
#ifdef HAVE_SOCKADDR_IN6_SCOPE_ID
|
|
if (sin1->sin6_scope_id != sin2->sin6_scope_id)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
/* don't know */
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Do a forward lookup on @p name_buf and make sure it corresponds to
|
|
* @p ss -- otherwise we may be being spoofed. If we suspect we are,
|
|
* then we don't abort the connection but just emit a warning, and
|
|
* change @p name_buf to be "UNKNOWN".
|
|
*
|
|
* We don't do anything with the service when checking the name,
|
|
* because it doesn't seem that it could be spoofed in any way, and
|
|
* getaddrinfo on random service names seems to cause problems on AIX.
|
|
**/
|
|
static int check_name(const char *ipaddr, const struct sockaddr_storage *ss, char *name_buf, size_t name_buf_size)
|
|
{
|
|
struct addrinfo hints, *res, *res0;
|
|
int error;
|
|
int ss_family = GET_SOCKADDR_FAMILY(ss);
|
|
|
|
memset(&hints, 0, sizeof hints);
|
|
hints.ai_family = ss_family;
|
|
hints.ai_flags = AI_CANONNAME;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
error = getaddrinfo(name_buf, NULL, &hints, &res0);
|
|
if (error) {
|
|
rprintf(FLOG, "forward name lookup for %s failed: %s\n",
|
|
name_buf, gai_strerror(error));
|
|
strlcpy(name_buf, default_name, name_buf_size);
|
|
return error;
|
|
}
|
|
|
|
/* Given all these results, we expect that one of them will be
|
|
* the same as ss. The comparison is a bit complicated. */
|
|
for (res = res0; res; res = res->ai_next) {
|
|
if (!compare_addrinfo_sockaddr(res, ss))
|
|
break; /* OK, identical */
|
|
}
|
|
|
|
if (!res0) {
|
|
/* We hit the end of the list without finding an
|
|
* address that was the same as ss. */
|
|
rprintf(FLOG, "no known address for \"%s\": "
|
|
"spoofed address?\n", name_buf);
|
|
strlcpy(name_buf, default_name, name_buf_size);
|
|
} else if (res == NULL) {
|
|
/* We hit the end of the list without finding an
|
|
* address that was the same as ss. */
|
|
rprintf(FLOG, "%s is not a known address for \"%s\": "
|
|
"spoofed address?\n", ipaddr, name_buf);
|
|
strlcpy(name_buf, default_name, name_buf_size);
|
|
}
|
|
|
|
freeaddrinfo(res0);
|
|
return 0;
|
|
}
|
|
|
|
/* Returns 1 for a valid IPv4 or IPv6 addr, or 0 for a bad one. */
|
|
static int valid_ipaddr(const char *s)
|
|
{
|
|
int i;
|
|
|
|
if (strchr(s, ':') != NULL) { /* Only IPv6 has a colon. */
|
|
int count, saw_double_colon = 0;
|
|
int ipv4_at_end = 0;
|
|
|
|
if (*s == ':') { /* A colon at the start must be a :: */
|
|
if (*++s != ':')
|
|
return 0;
|
|
saw_double_colon = 1;
|
|
s++;
|
|
}
|
|
|
|
for (count = 0; count < 8; count++) {
|
|
if (!*s)
|
|
return saw_double_colon;
|
|
|
|
if (strchr(s, ':') == NULL && strchr(s, '.') != NULL) {
|
|
if ((!saw_double_colon && count != 6) || (saw_double_colon && count > 6))
|
|
return 0;
|
|
ipv4_at_end = 1;
|
|
break;
|
|
}
|
|
|
|
if (!isHexDigit(s++)) /* Need 1-4 hex digits */
|
|
return 0;
|
|
if (isHexDigit(s) && isHexDigit(++s) && isHexDigit(++s) && isHexDigit(++s))
|
|
return 0;
|
|
|
|
if (*s == ':') {
|
|
if (!*++s)
|
|
return 0;
|
|
if (*s == ':') {
|
|
if (saw_double_colon)
|
|
return 0;
|
|
saw_double_colon = 1;
|
|
s++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ipv4_at_end)
|
|
return !*s;
|
|
}
|
|
|
|
/* IPv4 */
|
|
for (i = 0; i < 4; i++) {
|
|
long n;
|
|
char *end;
|
|
|
|
if (i && *s++ != '.')
|
|
return 0;
|
|
n = strtol(s, &end, 10);
|
|
if (n > 255 || n < 0 || end <= s || end > s+3)
|
|
return 0;
|
|
s = end;
|
|
}
|
|
|
|
return !*s;
|
|
}
|