Added a SensorEventQueue, a circular buffer meant for reading with one thread

and polling a subhal with another. The writing thread gets access to pointers
in the internal buffer. This design avoids a memcpy on write when the multihal
fetches subhal events using poll().

Unit-tests include multithreaded reading and writing lots of events, in
random-sized chunks.

This is not used by the multihal yet. That will be a different CL.

Change-Id: I58418d69eebebeb96befb08ba3aed080f0f08551
This commit is contained in:
Aaron Whyte
2013-10-22 17:17:17 -07:00
committed by Mike Lockwood
parent 079083281e
commit ab6ec384c4
5 changed files with 389 additions and 7 deletions

View File

@@ -0,0 +1,173 @@
#include <stdio.h>
#include <stdlib.h>
#include <hardware/sensors.h>
#include <pthread.h>
#include "SensorEventQueue.cpp"
// Unit tests for the SensorEventQueue.
// Run it like this:
//
// make sensorstests -j32 && \
// out/host/linux-x86/obj/EXECUTABLES/sensorstests_intermediates/sensorstests
bool checkWritableBufferSize(SensorEventQueue* queue, int requested, int expected) {
sensors_event_t* buffer;
int actual = queue->getWritableRegion(requested, &buffer);
if (actual != expected) {
printf("Expected buffer size was %d; actual was %d\n", expected, actual);
return false;
}
return true;
}
bool checkSize(SensorEventQueue* queue, int expected) {
int actual = queue->getSize();
if (actual != expected) {
printf("Expected queue size was %d; actual was %d", expected, actual);
return false;
}
return true;
}
bool testSimpleWriteSizeCounts() {
printf("TEST testSimpleWriteSizeCounts\n");
SensorEventQueue* queue = new SensorEventQueue(10);
if (!checkSize(queue, 0)) return false;
if (!checkWritableBufferSize(queue, 11, 10)) return false;
if (!checkWritableBufferSize(queue, 10, 10)) return false;
if (!checkWritableBufferSize(queue, 9, 9)) return false;
queue->markAsWritten(7);
if (!checkSize(queue, 7)) return false;
if (!checkWritableBufferSize(queue, 4, 3)) return false;
if (!checkWritableBufferSize(queue, 3, 3)) return false;
if (!checkWritableBufferSize(queue, 2, 2)) return false;
queue->markAsWritten(3);
if (!checkSize(queue, 10)) return false;
if (!checkWritableBufferSize(queue, 1, 0)) return false;
printf("passed\n");
return true;
}
bool testWrappingWriteSizeCounts() {
printf("TEST testWrappingWriteSizeCounts\n");
SensorEventQueue* queue = new SensorEventQueue(10);
queue->markAsWritten(9);
if (!checkSize(queue, 9)) return false;
// dequeue from the front
queue->dequeue();
queue->dequeue();
if (!checkSize(queue, 7)) return false;
if (!checkWritableBufferSize(queue, 100, 1)) return false;
// Write all the way to the end.
queue->markAsWritten(1);
if (!checkSize(queue, 8)) return false;
// Now the two free spots in the front are available.
if (!checkWritableBufferSize(queue, 100, 2)) return false;
// Fill the queue again
queue->markAsWritten(2);
if (!checkSize(queue, 10)) return false;
printf("passed\n");
return true;
}
static const int TTOQ_EVENT_COUNT = 10000;
struct TaskContext {
bool success;
SensorEventQueue* queue;
};
void* writerTask(void* ptr) {
printf("writerTask starts\n");
TaskContext* ctx = (TaskContext*)ptr;
SensorEventQueue* queue = ctx->queue;
int totalWrites = 0;
sensors_event_t* buffer;
while (totalWrites < TTOQ_EVENT_COUNT) {
queue->waitForSpaceAndLock();
int writableSize = queue->getWritableRegion(rand() % 10 + 1, &buffer);
queue->unlock();
for (int i = 0; i < writableSize; i++) {
// serialize the events
buffer[i].timestamp = totalWrites++;
}
queue->lock();
queue->markAsWritten(writableSize);
queue->unlock();
}
printf("writerTask ends normally\n");
return NULL;
}
void* readerTask(void* ptr) {
printf("readerTask starts\n");
TaskContext* ctx = (TaskContext*)ptr;
SensorEventQueue* queue = ctx->queue;
int totalReads = 0;
while (totalReads < TTOQ_EVENT_COUNT) {
queue->waitForDataAndLock();
int maxReads = rand() % 20 + 1;
int reads = 0;
while (queue->getSize() && reads < maxReads) {
sensors_event_t* event = queue->peek();
if (totalReads != event->timestamp) {
printf("FAILURE: readerTask expected timestamp %d; actual was %d\n",
totalReads, (int)(event->timestamp));
ctx->success = false;
return NULL;
}
queue->dequeue();
totalReads++;
reads++;
}
queue->unlock();
}
printf("readerTask ends normally\n");
return NULL;
}
// Create a short queue, and write and read a ton of data through it.
// Write serial timestamps into the events, and expect to read them in the right order.
bool testTwoThreadsOneQueue() {
printf("TEST testTwoThreadsOneQueue\n");
SensorEventQueue* queue = new SensorEventQueue(100);
TaskContext readerCtx;
readerCtx.success = true;
readerCtx.queue = queue;
TaskContext writerCtx;
writerCtx.success = true;
writerCtx.queue = queue;
pthread_t writer, reader;
pthread_create(&reader, NULL, readerTask, &readerCtx);
pthread_create(&writer, NULL, writerTask, &writerCtx);
pthread_join(writer, NULL);
pthread_join(reader, NULL);
printf("testTwoThreadsOneQueue done\n");
return readerCtx.success && writerCtx.success;
}
int main(int argc, char **argv) {
if (testSimpleWriteSizeCounts() &&
testWrappingWriteSizeCounts() &&
testTwoThreadsOneQueue()) {
printf("ALL PASSED\n");
} else {
printf("SOMETHING FAILED\n");
}
return EXIT_SUCCESS;
}