Files
xserver_xsdl/hw/xfree86/os-support/bus/zx1PCI.c
Egbert Eich 516f452e78 Adding support for OS dependent probing of IA64 chipsets. Not all IA64
chipsets can be probed without OS support as probing them is only
    possible using ACPI. One example of this are the HP ZX1/2 chipsets:
    previously the code assumed that these chips were present when no other
    of the known chipsets could be probed. This assumption brought SGI
    Altrix machines with 64 CPUs to a grinding halt.
2004-09-15 09:23:59 +00:00

1110 lines
32 KiB
C

/* $XFree86: xc/programs/Xserver/hw/xfree86/os-support/bus/zx1PCI.c,v 1.8 2004/01/16 15:39:38 tsi Exp $ */
/*
* Copyright (C) 2002-2003 The XFree86 Project, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the XFree86 Project shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from the
* XFree86 Project.
*/
/*
* This file contains the glue necessary for support of HP's ZX1 chipset.
* Keep in mind that this chipset is used in both Itanium2 and PA-RISC
* architectures.
*/
#include "zx1PCI.h"
#include "xf86.h"
#include "xf86_OSlib.h"
#include "Pci.h"
#define MIO_BASE 0xFED00000UL /* mio register base */
#define MIO_SIZE 0x00002000UL /* 8k, minimum */
/* ZX1 mio register definitions */
#define MIO_FUNCTION0 0x0000U
#define MODULE_INFO 0x0100U
#define STATUS_CONTROL 0x0108U
#define DILLON_PRESENT 0x02UL
#define LMMIO_DIR_BASE0 0x0300U
#define LMMIO_DIR_MASK0 0x0308U
#define LMMIO_DIR_ROUTE0 0x0310U
#define LMMIO_DIR_BASE1 0x0318U
#define LMMIO_DIR_MASK1 0x0320U
#define LMMIO_DIR_ROUTE1 0x0328U
#define LMMIO_DIR_BASE2 0x0330U
#define LMMIO_DIR_MASK2 0x0338U
#define LMMIO_DIR_ROUTE2 0x0340U
#define LMMIO_DIR_BASE3 0x0348U
#define LMMIO_DIR_MASK3 0x0350U
#define LMMIO_DIR_ROUTE3 0x0358U
#define LMMIO_DIST_BASE 0x0360U
#define LMMIO_DIST_MASK 0x0368U
#define LMMIO_DIST_ROUTE 0x0370U
#define GMMIO_DIST_BASE 0x0378U
#define PORT_DISABLE 0x02UL
#define MAP_TO_LMMIO 0x04UL
#define GMMIO_DIST_MASK 0x0380U
#define GMMIO_DIST_ROUTE 0x0388U
#define IOS_DIST_BASE 0x0390U
#define IOS_DIST_MASK 0x0398U
#define IOS_DIST_ROUTE 0x03A0U
#define ROPE_CONFIG_BASE 0x03A8U
#define VGA_ROUTE 0x03B0U
#define VGA_ENABLE 0x8000000000000000UL
#define VGA_LIGHT 0x4000000000000000UL
#define IOS_DIR_BASE 0x03C0U
#define IOS_DIR_MASK 0x03C8U
#define IOS_DIR_ROUTE 0x03D0U
#define IOS_BASE 0x03D8U
#define MIO_FUNCTION1 0x1000U
#define ROPE_CONFIG 0x1040U
#define ROPE_D0 0x0100UL
#define ROPE_D2 0x0200UL
#define ROPE_D4 0x0400UL
#define ROPE_D6 0x0800UL
#define ROPE_Q0 0x1000UL
#define ROPE_Q4 0x2000UL
#define LBA_PORT0_CNTRL 0x1200U
#define LBA_PORT1_CNTRL 0x1208U
#define LBA_PORT2_CNTRL 0x1210U
#define LBA_PORT3_CNTRL 0x1218U
#define LBA_PORT4_CNTRL 0x1220U
#define LBA_PORT5_CNTRL 0x1228U
#define LBA_PORT6_CNTRL 0x1230U
#define LBA_PORT7_CNTRL 0x1238U
#define LBA_RESET_FUNCTION 0x0000000001UL
#define LBA_CLEAR_ERROR 0x0000000010UL
#define LBA_HARD_FAIL 0x0000000040UL
#define LBA_RESET_COMPLETE 0x0100000000UL
#define ROPE_PAGE_CONTROL 0x1418U
/*
* Total ioa configuration space size is actually 128k, but we only need the
* first 64k.
*/
#define IOA_SIZE 0x00010000UL
/* ZX1 ioa register definitions */
#define IOA_CONFIG_ADDR 0x0040U
#define IOA_CONFIG_DATA 0x0048U
#define IOA_SECONDARY_BUS 0x0058U
#define IOA_SUBORDINATE_BUS 0x0059U
#define IOA_CONTROL 0x0108U
#define IOA_RESET_FUNCTION 0x0000000001UL
#define IOA_FORWARD_VGA 0x0000000008UL
#define IOA_CLEAR_ERROR 0x0000000010UL
#define IOA_HARD_FAIL 0x0000000040UL
#define IOA_RESET_COMPLETE 0x0100000000UL
#define IOA_LMMIO_BASE 0x0200U
#define IOA_LMMIO_MASK 0x0208U
#define IOA_GMMIO_BASE 0x0210U
#define IOA_GMMIO_MASK 0x0218U
#define IOA_WLMMIO_BASE 0x0220U
#define IOA_WLMMIO_MASK 0x0228U
#define IOA_WGMMIO_BASE 0x0230U
#define IOA_WGMMIO_MASK 0x0238U
#define IOA_IOS_BASE 0x0240U
#define IOA_IOS_MASK 0x0248U
#define IOA_ELMMIO_BASE 0x0250U
#define IOA_ELMMIO_MASK 0x0258U
#define IOA_EIOS_BASE 0x0260U
#define IOA_EIOS_MASK 0x0268U
#define IOA_GLOBAL_MASK 0x0270U
#define IOA_SLAVE_CONTROL 0x0278U
#define IOA_VGA_PEER_ENABLE 0x2000UL
#define IOA_MSI_BASE 0x0280U
#define IOA_MSI_MASK 0x0288U
#define IOA_DMA_BASE 0x02B0U
#define IOA_DMA_MASK 0x02B8U
#define IOA_ERROR_CONFIG 0x0680U
#define IOA_ERROR_PIOWRITE 0x0001UL
#define IOA_ERROR_PIOREAD 0x0002UL
#define IOA_ERROR_DMAWRITE 0x0004UL
#define IOA_ERROR_DMAREAD 0x0008UL
#define IOA_ERROR_CONFIG_MASTER 0x0010UL
#define IOA_ERROR_SMART 0x0020UL
#define IOA_ERROR_FATAL_SERR 0x0040UL
#define IOA_ERROR_ASSERT_SERR 0x0080UL
/* ? 0x0100UL */
#define IOA_ERROR_LOOPBACK 0x0200UL
#define IOA_ERROR_CONFIG_TARGET 0x0400UL
#define IOA_ERROR_IO_MASTER 0x0800UL
#define IOA_ERROR_IO_TARGET 0x1000UL
#define IOA_ERROR_MEM_MASTER 0x2000UL
#define IOA_ERROR_MEM_TARGET 0x4000UL
#define IOA_ERROR_HF_IO_FATAL 0x8000UL
#define RANGE_ENABLE 0x01UL /* In various base registers */
#define IO_MASK ((1UL << 16) - 1UL)
#define LMMIO_MASK ((1UL << 32) - 1UL)
#ifdef __ia64__
#define GMMIO_MASK ((1UL << 44) - 1UL)
#else /* PA-RISC */
#define GMMIO_MASK ((1UL << 40) - 1UL)
#endif
#define PDH_START 0xFF000000UL
#define PDH_LAST 0xFFFFFFFFUL
static CARD8 *pZX1mio = NULL,
*pZX1ioa = NULL;
/* Per-rope data */
static INT8 zx1_ropemap[8];
static CARD32 zx1_pciids[8];
static CARD64 zx1_lbacntl[8];
static int zx1_busno[8], zx1_subno[8];
/* Array of Booleans for non-empty buses */
static INT8 zx1_busnmpt[MAX_PCI_BUSES];
static pciBusFuncs_t zx1BusFuncs;
static int zx1_fakebus = -1;
static Bool zx1_hasvga = FALSE;
static pointer pZX1IoRes[8], pZX1MemRes[8]; /* Rope resources */
/* Non-PCI configuration space access macros */
#define MIO_BYTE(offset) \
(*(volatile CARD8 *)(pointer)(pZX1mio + (offset)))
#define MIO_WORD(offset) \
(*(volatile CARD16 *)(pointer)(pZX1mio + (offset)))
#define MIO_LONG(offset) \
(*(volatile CARD32 *)(pointer)(pZX1mio + (offset)))
#define MIO_QUAD(offset) \
(*(volatile CARD64 *)(pointer)(pZX1mio + (offset)))
#define IOA_BYTE(ioa, offset) \
(*(volatile CARD8 *)(pointer)(pZX1ioa + ((offset) + ((ioa) << 13))))
#define IOA_WORD(ioa, offset) \
(*(volatile CARD16 *)(pointer)(pZX1ioa + ((offset) + ((ioa) << 13))))
#define IOA_LONG(ioa, offset) \
(*(volatile CARD32 *)(pointer)(pZX1ioa + ((offset) + ((ioa) << 13))))
#define IOA_QUAD(ioa, offset) \
(*(volatile CARD64 *)(pointer)(pZX1ioa + ((offset) + ((ioa) << 13))))
/* Range definitions */
#define MAX_RANGE 16
static CARD64 bot[MAX_RANGE], top[MAX_RANGE], msk[MAX_RANGE], siz[MAX_RANGE];
static INT8 *pDecode[MAX_RANGE];
static int nRange = 0;
/* Track a resource range and assign a granularity to it */
static void
SetRange(CARD64 base, CARD64 last, CARD8 width)
{
int i;
bot[nRange] = base;
top[nRange] = last;
msk[nRange] = (CARD64)(-1L);
if (base)
msk[nRange] &= (base ^ (base - 1UL)) >> 1;
if (last + 1UL)
msk[nRange] &= (last ^ (last + 1UL)) >> 1;
if (width < 64)
msk[nRange] &= (1UL << width) - 1UL;
/* Look for overlapping ranges */
for (i = 0; i < nRange; i++) {
if ((bot[i] > top[i]) ||
(top[nRange] < bot[i]) ||
(top[i] < bot[nRange]))
continue;
/* Merge in overlapping range */
if (bot[nRange] > bot[i])
bot[nRange] = bot[i];
if (top[nRange] < top[i])
top[nRange] = top[i];
/* Assign finer granularity */
msk[nRange] &= msk[i];
bot[i] = 1UL;
top[i] = 0;
}
nRange++;
}
/* Lookup granularity associated with the range containing 'base' */
static int
GetRange(CARD64 base)
{
int i;
for (i = 0; i < nRange; i++) {
if ((bot[i] > top[i]) ||
(base < bot[i]) ||
(base > top[i]))
continue;
if (pDecode[i])
break;
/* Allocate decoding array */
msk[i]++;
siz[i] = ((top[i] - bot[i] + 1UL) / msk[i]) + 1UL;
pDecode[i] = xnfalloc(siz[i]);
(void)memset(pDecode[i], -1, siz[i]);
break;
}
return i;
}
/*
* Verify that 'bus' is a rope's secondary bus and return the pciConfigPtr of
* the associated fake PCI-to-PCI bridge.
*/
static pciConfigPtr
VerifyZX1Bus(int bus)
{
pciConfigPtr pPCI;
if ((bus < 0) || (bus >= pciNumBuses) ||
!pciBusInfo[bus] || !(pPCI = pciBusInfo[bus]->bridge) ||
(pPCI->busnum != zx1_fakebus) || (pPCI->funcnum != 0) ||
(pPCI->devnum < 0x10) || (pPCI->devnum > 0x17))
return NULL;
return pPCI;
}
/*
* This function is called to emulate the various settings in a P2P or CardBus
* bridge's control register on a ZX1-based system.
*/
static CARD16
ControlZX1Bridge(int bus, CARD16 mask, CARD16 value)
{
pciConfigPtr pPCI;
CARD64 tmp1, tmp2, tmp3, ropenum;
CARD16 current = 0;
if ((pPCI = VerifyZX1Bus(bus))) {
ropenum = pPCI->devnum & 0x07;
/*
* Start with VGA enablement. This preserves the "VGA-lite" bit
* in mio's VGA_ROUTE register, and the VPE bit in each ioa's
* SLAVE_CONTROL register.
*/
tmp1 = MIO_QUAD(VGA_ROUTE);
tmp2 = IOA_QUAD(ropenum, IOA_CONTROL) &
~(IOA_RESET_FUNCTION | IOA_CLEAR_ERROR);
if ((tmp1 & VGA_ENABLE) && ((tmp1 & 0x07UL) == ropenum)) {
current |= PCI_PCI_BRIDGE_VGA_EN;
if ((mask & PCI_PCI_BRIDGE_VGA_EN) &&
!(value & PCI_PCI_BRIDGE_VGA_EN)) {
MIO_QUAD(VGA_ROUTE) = tmp1 & ~VGA_ENABLE;
tmp2 &= ~IOA_FORWARD_VGA;
IOA_QUAD(ropenum, IOA_CONTROL) = tmp2;
}
} else if (mask & value & PCI_PCI_BRIDGE_VGA_EN) {
if (!zx1_hasvga) {
xf86MsgVerb(X_WARNING, 3,
"HP ZX1: Attempt to enable VGA routing to bus %d"
" through rope %ld disallowed\n", bus, ropenum);
value &= ~PCI_PCI_BRIDGE_VGA_EN;
} else {
if (tmp1 & VGA_ENABLE) {
/*
* VGA is routed somewhere else. Disable it.
*/
MIO_QUAD(VGA_ROUTE) = 0UL;
tmp3 = IOA_QUAD(tmp1 & 0x07UL, IOA_CONTROL);
if (tmp3 & IOA_FORWARD_VGA)
IOA_QUAD(tmp1 & 0x07UL, IOA_CONTROL) = tmp3 &
~(IOA_RESET_FUNCTION | IOA_FORWARD_VGA |
IOA_CLEAR_ERROR);
}
if (!(tmp2 & IOA_FORWARD_VGA)) {
tmp2 |= IOA_FORWARD_VGA;
IOA_QUAD(ropenum, IOA_CONTROL) = tmp2;
}
tmp1 = (tmp1 & ~0x07UL) | ropenum | VGA_ENABLE;
MIO_QUAD(VGA_ROUTE) = tmp1;
}
}
/* Move on to master abort failure enablement */
tmp1 = MIO_QUAD((ropenum << 3) + LBA_PORT0_CNTRL) &
~(LBA_RESET_FUNCTION | LBA_CLEAR_ERROR);
if ((tmp1 & LBA_HARD_FAIL) || (tmp2 & IOA_HARD_FAIL)) {
current |= PCI_PCI_BRIDGE_MASTER_ABORT_EN;
if ((mask & PCI_PCI_BRIDGE_MASTER_ABORT_EN) &&
!(value & PCI_PCI_BRIDGE_MASTER_ABORT_EN)) {
if (tmp1 & LBA_HARD_FAIL)
MIO_QUAD((ropenum << 3) + LBA_PORT0_CNTRL) =
tmp1 & ~LBA_HARD_FAIL;
if (tmp2 & IOA_HARD_FAIL) {
tmp2 &= ~IOA_HARD_FAIL;
IOA_QUAD(ropenum, IOA_CONTROL) = tmp2;
}
}
} else {
if (mask & value & PCI_PCI_BRIDGE_MASTER_ABORT_EN) {
if (!(tmp1 & LBA_HARD_FAIL))
MIO_QUAD((ropenum << 3) + LBA_PORT0_CNTRL) =
tmp1 | LBA_HARD_FAIL;
if (!(tmp2 & IOA_HARD_FAIL)) {
tmp2 |= IOA_HARD_FAIL;
IOA_QUAD(ropenum, IOA_CONTROL) = tmp2;
}
}
}
/* Put emulation of any other P2P bridge control here */
}
return (current & ~mask) | (value & mask);
}
/* Retrieves a list of the resources routed to a rope's secondary bus */
static void
GetZX1BridgeResources(int bus,
pointer *ppIoRes,
pointer *ppMemRes,
pointer *ppPmemRes)
{
pciConfigPtr pPCI = VerifyZX1Bus(bus);
if (ppIoRes) {
xf86FreeResList(*ppIoRes);
*ppIoRes =
pPCI ? xf86DupResList(pZX1IoRes[pPCI->devnum & 0x07]) : NULL;
}
if (ppMemRes) {
xf86FreeResList(*ppMemRes);
*ppMemRes =
pPCI ? xf86DupResList(pZX1MemRes[pPCI->devnum & 0x07]) : NULL;
}
if (ppPmemRes) {
xf86FreeResList(*ppPmemRes);
*ppPmemRes = NULL;
}
}
/* The fake bus */
static CARD32
zx1FakeReadLong(PCITAG tag, int offset)
{
FatalError("zx1FakeReadLong(0x%lX, 0x%X) called\n",
(unsigned long)tag, offset);
}
static void
zx1FakeWriteLong(PCITAG tag, int offset, CARD32 val)
{
FatalError("zx1FakeWriteLong(0x%lX, 0x%X, 0x%08X) called\n",
(unsigned long)tag, offset, val);
}
static void
zx1FakeSetBits(PCITAG tag, int offset, CARD32 mask, CARD32 bits)
{
CARD32 val;
val = zx1FakeReadLong(tag, offset);
val &= ~mask;
val |= bits;
zx1FakeWriteLong(tag, offset, val);
}
static pciBusFuncs_t zx1FakeBusFuncs = {
zx1FakeReadLong,
zx1FakeWriteLong,
zx1FakeSetBits
};
static pciBusInfo_t zx1FakeBus = {
0, /* configMech -- copied from bus 0 */
0, /* numDevices -- copied from bus 0 */
FALSE, /* secondary */
0, /* primary_bus -- dynamically set */
#ifdef PowerMAX_OS
0, /* ppc_io_base -- ignored */
0, /* ppc_io_size -- ignored */
#endif
&zx1FakeBusFuncs, /* funcs */
NULL, /* pciBusPriv -- none */
NULL, /* bridge -- dynamically set */
};
void
xf86PreScanZX1(void)
{
resRange range;
unsigned long mapSize = xf86getpagesize();
unsigned long tmp, base, ioaaddr;
unsigned long flagsd, based, lastd, maskd, routed;
unsigned long flags0, base0, last0, mask0, route0;
unsigned long flags1, base1, last1, mask1, route1;
unsigned long flags2, base2, last2, mask2, route2;
unsigned long flags3, base3, last3, mask3, route3;
unsigned long flagsg, baseg, lastg, maskg, routeg;
unsigned long flagsl, basel, lastl;
int i, rope;
/* Map mio registers (minimum 8k) */
if (mapSize < MIO_SIZE)
mapSize = MIO_SIZE;
if (!(pZX1mio = xf86MapVidMem(-1, VIDMEM_MMIO, MIO_BASE, mapSize)))
return;
/* Look for ZX1's SBA and IOC */ /* XXX What about Dino? */
if ((MIO_LONG(MIO_FUNCTION0 + PCI_ID_REG) !=
DEVID(VENDOR_HP, CHIP_ZX1_SBA)) ||
(MIO_LONG(MIO_FUNCTION1 + PCI_ID_REG) !=
DEVID(VENDOR_HP, CHIP_ZX1_IOC))) {
xf86UnMapVidMem(-1, pZX1mio, mapSize);
pZX1mio = NULL;
return;
}
/* Map rope configuration space */
ioaaddr = MIO_QUAD(ROPE_CONFIG_BASE);
if (!(ioaaddr & RANGE_ENABLE) || /* No ropes */
((ioaaddr = ioaaddr & ~RANGE_ENABLE) & 0x01FFFFUL) || /* Not aligned */
!(pZX1ioa = xf86MapVidMem(-1, VIDMEM_MMIO, ioaaddr, IOA_SIZE))) {
xf86UnMapVidMem(-1, pZX1mio, mapSize);
pZX1mio = NULL;
return;
}
for (i = 0; i < 8; i++) {
zx1_ropemap[i] = i;
zx1_lbacntl[i] = 0;
xf86FreeResList(pZX1IoRes[i]);
xf86FreeResList(pZX1MemRes[i]);
pZX1IoRes[i] = pZX1MemRes[i] = NULL;
}
/*
* Determine which of 8 possible ropes exist in the system. This is done
* by looking at their "coupling" to generate a list of candidates,
* whittling this list down by factoring in ROPE_PAGE_CONTROL register
* contents, then poking each candidate's configuration space to determine
* its existence.
*/
tmp = MIO_QUAD(ROPE_CONFIG);
if (tmp & ROPE_D0)
zx1_ropemap[1] = 0;
if (tmp & ROPE_D2)
zx1_ropemap[3] = 2;
if (tmp & ROPE_D4)
zx1_ropemap[5] = 4;
if (tmp & ROPE_D6)
zx1_ropemap[7] = 6;
if (tmp & ROPE_Q0)
zx1_ropemap[1] = zx1_ropemap[2] = zx1_ropemap[3] = 0;
if (tmp & ROPE_Q4)
zx1_ropemap[5] = zx1_ropemap[6] = zx1_ropemap[7] = 4;
tmp = MIO_QUAD(ROPE_PAGE_CONTROL);
for (i = 0; i < 8; i++, tmp >>= 8)
if (!(CARD8)tmp)
zx1_ropemap[i] = -1;
for (i = 0; i < 8; ) {
if (zx1_ropemap[i] == i) {
/* Prevent hard-fails */
zx1_lbacntl[i] = MIO_QUAD((i << 3) + LBA_PORT0_CNTRL) &
~(LBA_RESET_FUNCTION | LBA_CLEAR_ERROR);
if (zx1_lbacntl[i] & LBA_HARD_FAIL)
MIO_QUAD((i << 3) + LBA_PORT0_CNTRL) =
zx1_lbacntl[i] & ~LBA_HARD_FAIL;
/* Poke for an ioa */
zx1_pciids[i] = IOA_LONG(i, PCI_ID_REG);
switch (zx1_pciids[i]) {
case DEVID(VENDOR_HP, CHIP_ELROY):
case DEVID(VENDOR_HP, CHIP_ZX1_LBA): /* Mercury */
case DEVID(VENDOR_HP, CHIP_ZX1_AGP8): /* QuickSilver */
/* Expected vendor/device IDs */
zx1_busno[i] =
(unsigned int)IOA_BYTE(i, IOA_SECONDARY_BUS);
zx1_subno[i] =
(unsigned int)IOA_BYTE(i, IOA_SUBORDINATE_BUS);
break;
default:
if ((CARD16)(zx1_pciids[i] + 1U) > (CARD16)1U)
xf86MsgVerb(X_NOTICE, 0,
"HP ZX1: Unexpected vendor/device id 0x%08X"
" on rope %d\n", zx1_pciids[i], i);
/* Nobody home, or not the "right" kind of rope guest */
/*
* Restore hard-fail setting. For "active" ropes, this is done
* later.
*/
if (zx1_lbacntl[i] & LBA_HARD_FAIL) {
MIO_QUAD((i << 3) + LBA_PORT0_CNTRL) = zx1_lbacntl[i];
zx1_lbacntl[i] = 0;
}
/* Ignore this rope and its couplings */
do {
zx1_ropemap[i++] = -1;
} while ((i < 8) && (zx1_ropemap[i] < i));
continue; /* Avoid over-incrementing 'i' */
}
}
i++;
}
/* Determine if VGA is currently routed */
tmp = MIO_QUAD(VGA_ROUTE);
if (tmp & VGA_ENABLE)
zx1_hasvga = TRUE;
/*
* Decode mio resource "coarse" routing (i.e. ignoring VGA). Due to the
* rather unusual flexibility of this chipset, this is done in a number of
* stages. For each of I/O and memory, first decode the relevant registers
* to generate ranges with an associated granularity. Overlapping ranges
* are merged into a larger range with the finer granularity. Each
* original range is then more thoroughly decoded using the granularity
* associated with the merged range that contains it. The result is then
* converted into resource lists for the common layer.
*
* Note that this doesn't care whether or not read-only bits are actually
* set as documented, nor that mask bits are contiguous. This does,
* however, factor in upper limits on I/O, LMMIO anf GMMIO addresses, and
* thus assumes high-order address bits are ignored rather than decoded.
* For example, an I/O address of 0x76543210 will be treated as 0x3210
* rather than considered out-of-range. In part, this handling is a
* consequence of the fact that high-order mask bits are zeroes instead of
* ones.
*/
flagsd = 0; based = 0; lastd = 0; maskd = 0; routed = 0;
flags0 = 0; base0 = 0; last0 = 0; mask0 = 0; route0 = 0;
flags1 = 0; base1 = 0; last1 = 0; mask1 = 0; route1 = 0;
flags2 = 0; base2 = 0; last2 = 0; mask2 = 0; route2 = 0;
flags3 = 0; base3 = 0; last3 = 0; mask3 = 0; route3 = 0;
flagsg = 0; baseg = 0; lastg = 0; maskg = 0; routeg = 0;
flagsl = 0; basel = 0; lastl = 0;
if ((tmp = MIO_QUAD(IOS_DIST_BASE)) & RANGE_ENABLE) {
flagsd = RANGE_ENABLE;
maskd = MIO_QUAD(IOS_DIST_MASK);
based = tmp & maskd & (~RANGE_ENABLE & IO_MASK);
lastd = based | (~maskd & IO_MASK);
routed = MIO_QUAD(IOS_DIST_ROUTE) >> 58;
SetRange(based, lastd, routed);
}
if ((tmp = MIO_QUAD(IOS_DIR_BASE)) & RANGE_ENABLE) {
flags0 = RANGE_ENABLE;
mask0 = MIO_QUAD(IOS_DIR_MASK);
base0 = tmp & mask0 & (~RANGE_ENABLE & IO_MASK);
last0 = base0 | (~mask0 & IO_MASK);
route0 = MIO_QUAD(IOS_DIR_ROUTE) & 0x07U;
SetRange(base0, last0, 64);
}
if (flagsd) {
i = GetRange(based);
for (tmp = based; tmp <= lastd; tmp += msk[i]) {
if ((tmp & maskd) == based) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[(tmp >> routed) & 0x07U];
}
}
flagsd = 0;
}
if (flags0) {
i = GetRange(base0);
for (tmp = base0; tmp <= last0; tmp += msk[i]) {
if ((tmp & mask0) == base0) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[route0];
}
}
flags0 = 0;
}
for (i = 0; i < nRange; i++) {
if (!pDecode[i])
continue;
rope = pDecode[i][0];
for (base = tmp = 0; ++tmp < siz[i]; ) {
if (rope == pDecode[i][tmp])
continue;
if (rope >= 0) {
RANGE(range, (base * msk[i]) + bot[i],
(tmp * msk[i]) + bot[i] - 1UL,
RANGE_TYPE(ResExcIoBlock, 0));
pZX1IoRes[rope] =
xf86AddResToList(pZX1IoRes[rope], &range, -1);
}
base = tmp;
rope = pDecode[i][base];
}
xfree(pDecode[i]);
pDecode[i] = NULL;
}
nRange = 0;
/*
* Move on to CPU memory access decoding. For now, don't tell the common
* layer about CPU memory ranges that are either relocated to 0 or
* translated into PCI I/O.
*/
SetRange(MIO_BASE, MIO_BASE + MIO_SIZE - 1UL, 64); /* mio */
SetRange(ioaaddr, ioaaddr + ((IOA_SIZE << 1) - 1UL), 64); /* ioa */
SetRange(PDH_START, PDH_LAST, 64); /* PDH */
SetRange(MIO_BASE, LMMIO_MASK, 64); /* Completeness */
if ((tmp = MIO_QUAD(LMMIO_DIST_BASE)) & RANGE_ENABLE) {
flagsd = RANGE_ENABLE;
maskd = MIO_QUAD(LMMIO_DIST_MASK);
based = tmp & maskd & (~RANGE_ENABLE & LMMIO_MASK);
lastd = based | (~maskd & LMMIO_MASK);
routed = MIO_QUAD(LMMIO_DIST_ROUTE) >> 58;
SetRange(based, lastd, routed);
}
if ((tmp = MIO_QUAD(LMMIO_DIR_BASE0)) & RANGE_ENABLE) {
flags0 = RANGE_ENABLE;
mask0 = MIO_QUAD(LMMIO_DIR_MASK0);
base0 = tmp & mask0 & (~RANGE_ENABLE & LMMIO_MASK);
last0 = base0 | (~mask0 & LMMIO_MASK);
route0 = MIO_QUAD(LMMIO_DIR_ROUTE0) & 0x07U;
SetRange(base0, last0, 64);
}
if ((tmp = MIO_QUAD(LMMIO_DIR_BASE1)) & RANGE_ENABLE) {
flags1 = RANGE_ENABLE;
mask1 = MIO_QUAD(LMMIO_DIR_MASK1);
base1 = tmp & mask1 & (~RANGE_ENABLE & LMMIO_MASK);
last1 = base1 | (~mask1 & LMMIO_MASK);
route1 = MIO_QUAD(LMMIO_DIR_ROUTE1) & 0x07U;
SetRange(base1, last1, 64);
}
if ((tmp = MIO_QUAD(LMMIO_DIR_BASE2)) & RANGE_ENABLE) {
flags2 = RANGE_ENABLE;
mask2 = MIO_QUAD(LMMIO_DIR_MASK2);
base2 = tmp & mask2 & (~RANGE_ENABLE & LMMIO_MASK);
last2 = base2 | (~mask2 & LMMIO_MASK);
route2 = MIO_QUAD(LMMIO_DIR_ROUTE2) & 0x07U;
SetRange(base2, last2, 64);
}
if ((tmp = MIO_QUAD(LMMIO_DIR_BASE3)) & RANGE_ENABLE) {
flags3 = RANGE_ENABLE;
mask3 = MIO_QUAD(LMMIO_DIR_MASK3);
base3 = tmp & mask3 & (~RANGE_ENABLE & LMMIO_MASK);
last3 = base3 | (~mask3 & LMMIO_MASK);
route3 = MIO_QUAD(LMMIO_DIR_ROUTE3) & 0x07U;
SetRange(base3, last3, 64);
}
if ((tmp = MIO_QUAD(GMMIO_DIST_BASE)) & RANGE_ENABLE) {
flagsg = tmp & (RANGE_ENABLE | PORT_DISABLE | MAP_TO_LMMIO);
maskg = MIO_QUAD(GMMIO_DIST_MASK);
baseg = tmp & maskg &
(~(RANGE_ENABLE | PORT_DISABLE | MAP_TO_LMMIO) & GMMIO_MASK);
lastg = baseg | (~maskg & GMMIO_MASK);
tmp = routeg = MIO_QUAD(GMMIO_DIST_ROUTE) >> 58;
if (!(flagsg & (PORT_DISABLE & MAP_TO_LMMIO)) && (tmp > 26))
tmp = 26;
SetRange(baseg, lastg, tmp);
}
if ((tmp = MIO_QUAD(IOS_BASE)) & RANGE_ENABLE) {
flagsl = RANGE_ENABLE;
basel = tmp & (~RANGE_ENABLE & GMMIO_MASK);
lastl = basel | 0x001FFFFFUL;
SetRange(basel, lastl, 64);
}
if (flagsd) {
i = GetRange(based);
for (tmp = based; tmp <= lastd; tmp += msk[i]) {
if ((tmp & maskd) == based) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[(tmp >> routed) & 0x07U];
}
}
flagsd = 0;
}
/* LMMIO distributed range does not address anything beyond 0xFED00000 */
i = GetRange(MIO_BASE);
for (tmp = MIO_BASE; tmp <= LMMIO_MASK; tmp += msk[i]) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = -1;
}
/* Dillon space can sometimes be redirected to rope 0 */
tmp = MIO_QUAD(STATUS_CONTROL);
if (!(tmp & DILLON_PRESENT)) {
i = GetRange(PDH_START);
for (tmp = PDH_START; tmp <= PDH_LAST; tmp += msk[i]) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[0];
}
}
if (flagsg) {
unsigned long mask = (0x07UL << routeg) | maskg;
i = GetRange(baseg);
for (tmp = baseg; tmp <= lastg; tmp += msk[i]) {
if ((tmp & maskg) == baseg) {
base = (tmp - bot[i]) / msk[i];
if ((flagsg & MAP_TO_LMMIO) ||
(!(flagsg & PORT_DISABLE) &&
(tmp <= ((tmp & mask) | 0x03FFFFFFUL)))) {
pDecode[i][base] = -1;
} else {
pDecode[i][base] = zx1_ropemap[(tmp >> routeg) & 0x07U];
}
}
}
flagsg = 0;
}
if (flagsl) {
i = GetRange(basel);
for (tmp = basel; tmp <= lastl; tmp += msk[i]) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = -1;
}
flagsl = 0;
}
/* For now, assume directed LMMIO ranges don't overlap with each other */
if (flags0) {
i = GetRange(base0);
for (tmp = base0; tmp <= last0; tmp += msk[i]) {
if ((tmp & mask0) == base0) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[route0];
}
}
flags0 = 0;
}
if (flags1) {
i = GetRange(base1);
for (tmp = base1; tmp <= last1; tmp += msk[i]) {
if ((tmp & mask1) == base1) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[route1];
}
}
flags1 = 0;
}
if (flags2) {
i = GetRange(base2);
for (tmp = base2; tmp <= last2; tmp += msk[i]) {
if ((tmp & mask2) == base2) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[route2];
}
}
flags2 = 0;
}
if (flags3) {
i = GetRange(base3);
for (tmp = base3; tmp <= last3; tmp += msk[i]) {
if ((tmp & mask3) == base3) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = zx1_ropemap[route3];
}
}
flags3 = 0;
}
/* Claim iao config area */
i = GetRange(ioaaddr);
for (tmp = ioaaddr; tmp < ioaaddr + (IOA_SIZE << 1); tmp += msk[i]) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = -1;
}
/* Claim mio config area */
i = GetRange(MIO_BASE);
for (tmp = MIO_BASE; tmp < (MIO_BASE + MIO_SIZE); tmp += msk[i]) {
base = (tmp - bot[i]) / msk[i];
pDecode[i][base] = -1;
}
for (i = 0; i < nRange; i++) {
if (!pDecode[i])
continue;
rope = pDecode[i][0];
for (base = tmp = 0; ++tmp < siz[i]; ) {
if (rope == pDecode[i][tmp])
continue;
if (rope >= 0) {
RANGE(range, (base * msk[i]) + bot[i],
(tmp * msk[i]) + bot[i] - 1UL,
RANGE_TYPE(ResExcMemBlock, 0));
pZX1MemRes[rope] =
xf86AddResToList(pZX1MemRes[rope], &range, -1);
}
base = tmp;
rope = pDecode[i][base];
}
xfree(pDecode[i]);
pDecode[i] = NULL;
}
nRange = 0;
return;
}
/* This is called to finalise the results of a PCI bus scan */
void
xf86PostScanZX1(void)
{
pciConfigPtr pPCI, *ppPCI, *ppPCI2;
pciBusInfo_t *pBusInfo;
int i, idx;
if (!pZX1mio)
return;
(void)memset(zx1_busnmpt, FALSE, sizeof(zx1_busnmpt));
pBusInfo = pciBusInfo[0];
/*
* Certain 2.4 & 2.5 Linux kernels add fake PCI devices. Remove them to
* prevent any possible interference with our PCI validation.
*
* Also, if VGA isn't routed on server entry, determine if VGA routing
* needs to be enabled while the server is running.
*/
idx = 0;
ppPCI = ppPCI2 = xf86scanpci(0); /* Recursion is only apparent */
while ((pPCI = *ppPCI2++)) {
switch (pPCI->pci_device_vendor) {
case DEVID(VENDOR_HP, CHIP_ELROY):
case DEVID(VENDOR_HP, CHIP_ZX1_SBA): /* Pluto function 0 */
case DEVID(VENDOR_HP, CHIP_ZX1_IOC): /* Pluto function 1 */
case DEVID(VENDOR_HP, CHIP_ZX1_LBA): /* Mercury */
case DEVID(VENDOR_HP, CHIP_ZX1_AGP8): /* QuickSilver */
xfree(pPCI); /* Remove it */
continue;
default:
*ppPCI++ = pPCI;
idx++;
zx1_busnmpt[pPCI->busnum] = TRUE;
if (zx1_hasvga)
continue;
switch (pPCI->pci_base_class) {
case PCI_CLASS_PREHISTORIC:
if (pPCI->pci_sub_class == PCI_SUBCLASS_PREHISTORIC_VGA)
break;
continue;
case PCI_CLASS_DISPLAY:
if (pPCI->pci_sub_class == PCI_SUBCLASS_DISPLAY_VGA)
break;
continue;
default:
continue;
}
zx1_hasvga = TRUE;
continue;
}
}
/*
* Restore hard-fail settings and figure out the actual secondary and
* subordinate bus numbers.
*/
for (i = 0; i < 8; i++) {
if (zx1_ropemap[i] != i)
continue;
if (zx1_lbacntl[i] & LBA_HARD_FAIL)
MIO_QUAD((i << 3) + LBA_PORT0_CNTRL) = zx1_lbacntl[i];
while ((zx1_busno[i] < zx1_subno[i]) && !pciBusInfo[zx1_subno[i]])
zx1_subno[i]--;
if (zx1_fakebus <= zx1_subno[i])
zx1_fakebus = zx1_subno[i] + 1;
while (!zx1_busnmpt[zx1_busno[i]]) {
if (zx1_busno[i]) /* Info for bus zero is in static storage */
xfree(pciBusInfo[zx1_busno[i]]);
pciBusInfo[zx1_busno[i]++] = NULL;
if (zx1_busno[i] > zx1_subno[i])
break;
}
}
if (zx1_fakebus >= pciNumBuses) {
if (zx1_fakebus >= pciMaxBusNum)
FatalError("HP ZX1: No room for fake PCI bus\n");
pciNumBuses = zx1_fakebus + 1;
}
/* Set up our extra bus functions */
zx1BusFuncs = *(pBusInfo->funcs);
zx1BusFuncs.pciControlBridge = ControlZX1Bridge;
zx1BusFuncs.pciGetBridgeResources = GetZX1BridgeResources;
/* Set up our own fake bus to act as the root segment */
zx1FakeBus.configMech = pBusInfo->configMech;
zx1FakeBus.numDevices = pBusInfo->numDevices;
zx1FakeBus.primary_bus = zx1_fakebus;
pciBusInfo[zx1_fakebus] = &zx1FakeBus;
/* Add the fake bus' host bridge */
if (++idx >= MAX_PCI_DEVICES)
FatalError("HP ZX1: No room for fake Host-to-PCI bridge\n");
*ppPCI++ = zx1FakeBus.bridge = pPCI = xnfcalloc(1, sizeof(pciDevice));
pPCI->tag = PCI_MAKE_TAG(zx1_fakebus, 0, 0);
pPCI->busnum = zx1_fakebus;
/* pPCI->devnum = pPCI->funcnum = 0; */
pPCI->pci_device_vendor = DEVID(VENDOR_HP, CHIP_ZX1_SBA);
pPCI->pci_base_class = PCI_CLASS_BRIDGE;
/* pPCI->pci_sub_class = PCI_SUBCLASS_BRIDGE_HOST; */
pPCI->fakeDevice = TRUE;
#ifdef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: BusID 0x%.2x,0x%02x,0x%1x "
"ID 0x%04x,0x%04x Rev 0x%02x Class 0x%02x,0x%02x\n",
pPCI->busnum, pPCI->devnum, pPCI->funcnum,
pPCI->pci_vendor, pPCI->pci_device, pPCI->pci_rev_id,
pPCI->pci_base_class, pPCI->pci_sub_class);
#else
xf86MsgVerb(X_INFO, 2, "PCI: %.2x:%02x:%1x: chip %04x,%04x"
" card %04x,%04x rev %02x class %02x,%02x,%02x hdr %02x\n",
pPCI->busnum, pPCI->devnum, pPCI->funcnum,
pPCI->pci_vendor, pPCI->pci_device,
pPCI->pci_subsys_vendor, pPCI->pci_subsys_card,
pPCI->pci_rev_id, pPCI->pci_base_class,
pPCI->pci_sub_class, pPCI->pci_prog_if,
pPCI->pci_header_type);
#endif
/* Add a fake PCI-to-PCI bridge to represent each active rope */
for (i = 0; i < 8; i++) {
if ((zx1_ropemap[i] != i) || (zx1_busno[i] > zx1_subno[i]) ||
!(pBusInfo = pciBusInfo[zx1_busno[i]]))
continue;
if (++idx >= MAX_PCI_DEVICES)
FatalError("HP ZX1: No room for fake PCI-to-PCI bridge\n");
*ppPCI++ = pPCI = xnfcalloc(1, sizeof(pciDevice));
pPCI->busnum = zx1_fakebus;
pPCI->devnum = i | 0x10;
/* pPCI->funcnum = 0; */
pPCI->tag = PCI_MAKE_TAG(zx1_fakebus, pPCI->devnum, 0);
pPCI->pci_device_vendor = zx1_pciids[i];
pPCI->pci_base_class = PCI_CLASS_BRIDGE;
pPCI->pci_sub_class = PCI_SUBCLASS_BRIDGE_PCI;
pPCI->pci_header_type = 1;
pPCI->pci_primary_bus_number = zx1_fakebus;
pPCI->pci_secondary_bus_number = zx1_busno[i];
pPCI->pci_subordinate_bus_number = zx1_subno[i];
pPCI->fakeDevice = TRUE;
pBusInfo->bridge = pPCI;
pBusInfo->secondary = TRUE;
pBusInfo->primary_bus = zx1_fakebus;
/* Plug in chipset routines */
pBusInfo->funcs = &zx1BusFuncs;
/* Set bridge control register for scanpci utility */
pPCI->pci_bridge_control = ControlZX1Bridge(zx1_busno[i], 0, 0);
#ifdef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: BusID 0x%.2x,0x%02x,0x%1x "
"ID 0x%04x,0x%04x Rev 0x%02x Class 0x%02x,0x%02x\n",
pPCI->busnum, pPCI->devnum, pPCI->funcnum,
pPCI->pci_vendor, pPCI->pci_device, pPCI->pci_rev_id,
pPCI->pci_base_class, pPCI->pci_sub_class);
#else
xf86MsgVerb(X_INFO, 2, "PCI: %.2x:%02x:%1x: chip %04x,%04x"
" card %04x,%04x rev %02x class %02x,%02x,%02x hdr %02x\n",
pPCI->busnum, pPCI->devnum, pPCI->funcnum,
pPCI->pci_vendor, pPCI->pci_device,
pPCI->pci_subsys_vendor, pPCI->pci_subsys_card,
pPCI->pci_rev_id, pPCI->pci_base_class,
pPCI->pci_sub_class, pPCI->pci_prog_if,
pPCI->pci_header_type);
#endif
}
*ppPCI = NULL; /* Terminate array */
}