Added new files

This commit is contained in:
srs5694
2009-08-29 15:00:08 -04:00
parent 86dd784a04
commit a0eb11a64b
4 changed files with 755 additions and 0 deletions

307
bsd.cc Normal file
View File

@@ -0,0 +1,307 @@
/* bsd.cc -- Functions for loading, saving, and manipulating legacy BSD disklabel
data. */
/* By Rod Smith, August, 2009 */
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#define __STDC_CONSTANT_MACROS
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <fcntl.h>
#include <string.h>
//#include <time.h>
#include <sys/stat.h>
#include <errno.h>
#include "crc32.h"
#include "support.h"
#include "bsd.h"
using namespace std;
BSDData::BSDData(void) {
state = unknown;
signature = UINT32_C(0);
signature2 = UINT32_C(0);
sectorSize = 512;
numParts = 0;
labelFirstLBA = 0;
labelLastLBA = 0;
labelStart = LABEL_OFFSET1; // assume raw disk format
// deviceFilename[0] = '\0';
partitions = NULL;
} // default constructor
BSDData::~BSDData(void) {
free(partitions);
} // destructor
int BSDData::ReadBSDData(char* device, uint64_t startSector, uint64_t endSector) {
int fd, allOK = 1;
if ((fd = open(device, O_RDONLY)) != -1) {
ReadBSDData(fd, startSector, endSector);
} else {
allOK = 0;
} // if
close(fd);
// if (allOK)
// strcpy(deviceFilename, device);
return allOK;
} // BSDData::ReadBSDData() (device filename version)
// Load the BSD disklabel data from an already-opened disk
// file, starting with the specified sector number.
void BSDData::ReadBSDData(int fd, uint64_t startSector, uint64_t endSector) {
uint8_t buffer[2048]; // I/O buffer
uint64_t startByte;
int i, err, foundSig = 0, bigEnd = 0;
int relative = 0; // assume absolute partition sector numbering
uint32_t realSig;
uint32_t* temp32;
uint16_t* temp16;
BSDRecord* tempRecords;
labelFirstLBA = startSector;
labelLastLBA = endSector;
// Read two sectors into memory; we'll extract data from
// this buffer. (Done to work around FreeBSD limitation)
lseek64(fd, startSector * 512, SEEK_SET);
err = read(fd, buffer, 2048);
// Do some strangeness to support big-endian architectures...
bigEnd = (IsLittleEndian() == 0);
realSig = BSD_SIGNATURE;
if (bigEnd)
ReverseBytes(&realSig, 4);
// Look for the signature at one of two locations
labelStart = LABEL_OFFSET1;
temp32 = (uint32_t*) &buffer[labelStart];
signature = *temp32;
if (signature == realSig) {
temp32 = (uint32_t*) &buffer[labelStart + 132];
signature2 = *temp32;
if (signature2 == realSig)
foundSig = 1;
} // if/else
if (!foundSig) { // look in second location
labelStart = LABEL_OFFSET2;
temp32 = (uint32_t*) &buffer[labelStart];
signature = *temp32;
if (signature == realSig) {
temp32 = (uint32_t*) &buffer[labelStart + 132];
signature2 = *temp32;
if (signature2 == realSig)
foundSig = 1;
} // if/else
} // if
// Load partition metadata from the buffer....
temp32 = (uint32_t*) &buffer[labelStart + 40];
sectorSize = *temp32;
temp16 = (uint16_t*) &buffer[labelStart + 138];
numParts = *temp16;
// Make it big-endian-aware....
if (IsLittleEndian() == 0)
ReverseMetaBytes();
// Check validity of the data and flag it appropriately....
if (foundSig && (numParts <= MAX_BSD_PARTS)) {
state = bsd;
} else {
state = bsd_invalid;
} // if/else
// If the state is good, go ahead and load the main partition data....
if (state == bsd) {
partitions = (struct BSDRecord*) malloc(numParts * sizeof (struct BSDRecord));
for (i = 0; i < numParts; i++) {
// Once again, we use the buffer, but index it using a BSDRecord
// pointer (dangerous, but effective)....
tempRecords = (BSDRecord*) &buffer[labelStart + 148];
partitions[i].lengthLBA = tempRecords[i].lengthLBA;
partitions[i].firstLBA = tempRecords[i].firstLBA;
partitions[i].fsType = tempRecords[i].fsType;
if (bigEnd) { // reverse data (fsType is a single byte)
ReverseBytes(&partitions[i].lengthLBA, 4);
ReverseBytes(&partitions[i].firstLBA, 4);
} // if big-endian
// Check for signs of relative sector numbering: A "0" first sector
// number on a partition with a non-zero length -- but ONLY if the
// length is less than the disk size, since NetBSD has a habit of
// creating a disk-sized partition within a carrier MBR partition
// that's too small to house it, and this throws off everything....
if ((partitions[i].firstLBA == 0) && (partitions[i].lengthLBA > 0)
&& (partitions[i].lengthLBA < labelLastLBA))
relative = 1;
} // for
// Some disklabels use sector numbers relative to the enclosing partition's
// start, others use absolute sector numbers. If relative numbering was
// detected above, apply a correction to all partition start sectors....
if (relative) {
for (i = 0; i < numParts; i++) {
partitions[i].firstLBA += startSector;
} // for
} // if
} // if signatures OK
// DisplayBSDData();
} // BSDData::ReadBSDData(int fd, uint64_t startSector)
// Reverse metadata's byte order; called only on big-endian systems
void BSDData::ReverseMetaBytes(void) {
ReverseBytes(&signature, 4);
ReverseBytes(&sectorSize, 4);
ReverseBytes(&signature2, 4);
ReverseBytes(&numParts, 2);
} // BSDData::ReverseMetaByteOrder()
// Display basic BSD partition data. Used for debugging.
void BSDData::DisplayBSDData(void) {
int i;
if (state == bsd) {
printf("BSD partitions:\n");
printf("Number\t Start (sector)\t Length (sectors)\tType\n");
for (i = 0; i < numParts; i++) {
printf("%4d\t%13lu\t%15lu \t0x%02X\n", i + 1,
(unsigned long) partitions[i].firstLBA,
(unsigned long) partitions[i].lengthLBA, partitions[i].fsType);
} // for
} // if
} // BSDData::DisplayBSDData()
// Displays the BSD disklabel state. Called during program launch to inform
// the user about the partition table(s) status
int BSDData::ShowState(void) {
int retval = 0;
switch (state) {
case bsd_invalid:
printf(" BSD: not present\n");
break;
case bsd:
printf(" BSD: present\n");
retval = 1;
break;
default:
printf("\a BSD: unknown -- bug!\n");
break;
} // switch
return retval;
} // BSDData::ShowState()
// Returns the BSD table's partition type code
uint8_t BSDData::GetType(int i) {
uint8_t retval = 0; // 0 = "unused"
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = partitions[i].fsType;
return(retval);
} // BSDData::GetType()
// Returns the number of the first sector of the specified partition
uint64_t BSDData::GetFirstSector(int i) {
uint64_t retval = UINT64_C(0);
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = (uint64_t) partitions[i].firstLBA;
return retval;
} // BSDData::GetFirstSector
// Returns the length (in sectors) of the specified partition
uint64_t BSDData::GetLength(int i) {
uint64_t retval = UINT64_C(0);
if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0))
retval = (uint64_t) partitions[i].lengthLBA;
return retval;
} // BSDData::GetLength()
// Returns the number of partitions defined in the current table
int BSDData::GetNumParts(void) {
return numParts;
} // BSDData::GetNumParts()
// Returns the specified partition as a GPT partition. Used in BSD-to-GPT
// conversion process
GPTPart BSDData::AsGPT(int i) {
GPTPart guid; // dump data in here, then return it
uint64_t sectorOne, sectorEnd; // first & last sectors of partition
char tempStr[NAME_SIZE]; // temporary string for holding GPT name
int passItOn = 1; // Set to 0 if partition is empty or invalid
guid.BlankPartition();
sectorOne = (uint64_t) partitions[i].firstLBA;
sectorEnd = sectorOne + (uint64_t) partitions[i].lengthLBA;
if (sectorEnd > 0) sectorEnd--;
// Note on above: BSD partitions sometimes have a length of 0 and a start
// sector of 0. With unsigned ints, the usual (start + length - 1) to
// find the end will result in a huge number, which will be confusing
// Do a few sanity checks on the partition before we pass it on....
// First, check that it falls within the bounds of its container
// and that it starts before it ends....
if ((sectorOne < labelFirstLBA) || (sectorEnd > labelLastLBA) || (sectorOne > sectorEnd))
passItOn = 0;
// Some disklabels include a pseudo-partition that's the size of the entire
// disk or containing partition. Don't return it.
if ((sectorOne <= labelFirstLBA) && (sectorEnd >= labelLastLBA) &&
(GetType(i) == 0))
passItOn = 0;
// If the end point is 0, it's not a valid partition.
if (sectorEnd == 0)
passItOn = 0;
if (passItOn) {
guid.SetFirstLBA(sectorOne);
guid.SetLastLBA(sectorEnd);
// Now set a random unique GUID for the partition....
guid.SetUniqueGUID(1);
// ... zero out the attributes and name fields....
guid.SetAttributes(UINT64_C(0));
// Most BSD disklabel type codes seem to be archaic or rare.
// They're also ambiguous; a FreeBSD filesystem is impossible
// to distinguish from a NetBSD one. Thus, these code assignment
// are going to be rough to begin with. For a list of meanings,
// see http://fxr.watson.org/fxr/source/sys/dtype.h?v=DFBSD,
// or Google it.
switch (GetType(i)) {
case 1: // BSD swap
guid.SetType(0xa502); break;
case 7: // BSD FFS
guid.SetType(0xa503); break;
case 8: case 11: // MS-DOS or HPFS
guid.SetType(0x0700); break;
case 9: // log-structured fs
guid.SetType(0xa903); break;
case 13: // bootstrap
guid.SetType(0xa501); break;
case 14: // vinum
guid.SetType(0xa505); break;
case 15: // RAID
guid.SetType(0xa903); break;
case 27: // FreeBSD ZFS
guid.SetType(0xa504); break;
default:
guid.SetType(0x0700); break;
} // switch
// Set the partition name to the name of the type code....
guid.SetName((unsigned char*) guid.GetNameType(tempStr));
} // if
return guid;
} // BSDData::AsGPT()

85
bsd.h Normal file
View File

@@ -0,0 +1,85 @@
/* bsd.h -- BSD disklabel data structure definitions, types, and functions */
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#include <stdint.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include "gptpart.h"
#ifndef __BSD_STRUCTS
#define __BSD_STRUCTS
#define BSD_SIGNATURE UINT32_C(0x82564557)
#define LABEL_OFFSET1 64 /* BSD disklabels can start at one of these two */
#define LABEL_OFFSET2 512 /* values; check both for valid signatures */
// FreeBSD documents a maximum # of partitions of 8, but I saw 16 on a NetBSD
// disk. I'm quadrupling that for further safety. Note that BSDReadData()
// uses a 2048-byte I/O buffer. In combination with LABEL_OFFSET2 and the
// additional 148-byte offset to the actual partition data, that gives a
// theoretical maximum of 86.75 partitions that the program can handle.
#define MAX_BSD_PARTS 64
using namespace std;
/****************************************
* *
* BSDData class and related structures *
* *
****************************************/
// Possible states of the MBR
enum BSDValidity {unknown, bsd_invalid, bsd};
// Data for a single BSD partition record
struct BSDRecord { // the partition table
uint32_t lengthLBA; // number of sectors in partition
uint32_t firstLBA; // starting sector
uint32_t fragSize; // filesystem basic fragment size
uint8_t fsType; // filesystem type, see below
uint8_t frag; // filesystem fragments per block
uint16_t pcpg; /* filesystem cylinders per group */ // was u_uint16_t
};
// Full data in tweaked MBR format
class BSDData {
protected:
// We only need a few items from the main BSD disklabel data structure....
uint32_t signature; // the magic number
uint32_t sectorSize; // # of bytes per sector
uint32_t signature2; // the magic number (again)
uint16_t numParts; // number of partitions in table
BSDRecord* partitions; // partition array
// Above are basic BSD disklabel data; now add more stuff....
// uint64_t offset; // starting point in blocks
uint64_t labelStart; // BSD disklabel start point in bytes from firstLBA
uint64_t labelFirstLBA; // first sector of BSD disklabel (partition or disk)
uint64_t labelLastLBA; // final sector of BSD disklabel
// char deviceFilename[256];
BSDValidity state;
// struct BSDRecord* GetPartition(int i); // Return BSD partition
public:
BSDData(void);
~BSDData(void);
int ReadBSDData(char* deviceFilename, uint64_t startSector, uint64_t endSector);
void ReadBSDData(int fd, uint64_t startSector, uint64_t endSector);
void ReverseMetaBytes(void);
void DisplayBSDData(void);
// int ConvertBSDParts(struct GPTPartition gptParts[]);
int ShowState(void); // returns 1 if BSD disklabel detected
int IsDisklabel(void) {return (state == bsd);}
// Functions to extract data on specific partitions....
uint8_t GetType(int i);
uint64_t GetFirstSector(int i);
uint64_t GetLength(int i);
int GetNumParts(void);
GPTPart AsGPT(int i); // Return BSD part. as GPT part.
}; // struct MBRData
#endif

274
gptpart.cc Normal file
View File

@@ -0,0 +1,274 @@
//
// C++ Implementation: gptpart
//
// Description: Class to implement a SINGLE GPT partition
//
//
// Author: Rod Smith <rodsmith@rodsbooks.com>, (C) 2009
//
// Copyright: See COPYING file that comes with this distribution
//
//
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#define __STDC_CONSTANT_MACROS
#include <stdio.h>
#include <string.h>
#include "gptpart.h"
#include "attributes.h"
using namespace std;
PartTypes GPTPart::typeHelper;
GPTPart::GPTPart(void) {
} // Default constructor
GPTPart::~GPTPart(void) {
} // destructor
// Return partition's name field
unsigned char* GPTPart::GetName(unsigned char* ref) {
if (ref == NULL)
ref = (unsigned char*) malloc(NAME_SIZE * sizeof (unsigned char));
strcpy((char*) ref, (char*) name);
return ref;
} // GPTPart::GetName()
// Return the gdisk-specific two-byte hex code for the partition
uint16_t GPTPart::GetHexType(void) {
return typeHelper.GUIDToID(partitionType);
} // GPTPart::GetHexType()
// Return a plain-text description of the partition type (e.g., "Linux/Windows
// data" or "Linux swap").
char* GPTPart::GetNameType(char* theName) {
return typeHelper.GUIDToName(partitionType, theName);
} // GPTPart::GetNameType()
// Compute and return the partition's length (or 0 if the end is incorrectly
// set before the beginning).
uint64_t GPTPart::GetLengthLBA(void) {
uint64_t length = 0;
if (firstLBA <= lastLBA)
length = lastLBA - firstLBA + UINT64_C(1);
return length;
} // GPTPart::GetLengthLBA()
GPTPart & GPTPart::operator=(const GPTPart & orig) {
int i;
partitionType = orig.partitionType;
uniqueGUID = orig.uniqueGUID;
firstLBA = orig.firstLBA;
lastLBA = orig.lastLBA;
attributes = orig.attributes;
for (i = 0; i < NAME_SIZE; i++)
name[i] = orig.name[i];
} // assignment operator
// Sets the unique GUID to a value of 0 or a random value,
// depending on the parameter: 0 = 0, anything else = random
void GPTPart::SetUniqueGUID(int zeroOrRandom) {
if (zeroOrRandom == 0) {
uniqueGUID.data1 = 0;
uniqueGUID.data2 = 0;
} else {
// rand() is only 32 bits on 32-bit systems, so multiply together to
// fill a 64-bit value.
uniqueGUID.data1 = (uint64_t) rand() * (uint64_t) rand();
uniqueGUID.data2 = (uint64_t) rand() * (uint64_t) rand();
}
} // GPTPart::SetUniqueGUID()
// Blank (delete) a single partition
void GPTPart::BlankPartition(void) {
int j;
GUIDData zeroGUID;
zeroGUID.data1 = 0;
zeroGUID.data2 = 0;
uniqueGUID = zeroGUID;
partitionType = zeroGUID;
firstLBA = 0;
lastLBA = 0;
attributes = 0;
for (j = 0; j < NAME_SIZE; j++)
name[j] = '\0';
} // GPTPart::BlankPartition
// Returns 1 if the two partitions overlap, 0 if they don't
int GPTPart::DoTheyOverlap(GPTPart* other) {
int theyDo = 0;
// Don't bother checking unless these are defined (both start and end points
// are 0 for undefined partitions, so just check the start points)
if ((firstLBA != 0) && (other->firstLBA != 0)) {
if ((firstLBA < other->lastLBA) && (lastLBA >= other->firstLBA))
theyDo = 1;
if ((other->firstLBA < lastLBA) && (other->lastLBA >= firstLBA))
theyDo = 1;
} // if
return (theyDo);
} // GPTPart::DoTheyOverlap()
// Reverse the bytes of integral data types; used on big-endian systems.
void GPTPart::ReversePartBytes(void) {
ReverseBytes(&partitionType.data1, 8);
ReverseBytes(&partitionType.data2, 8);
ReverseBytes(&uniqueGUID.data1, 8);
ReverseBytes(&uniqueGUID.data2, 8);
ReverseBytes(&firstLBA, 8);
ReverseBytes(&lastLBA, 8);
ReverseBytes(&attributes, 8);
} // GPTPart::ReverseBytes()
// Display summary information; does nothing if the partition is empty.
void GPTPart::ShowSummary(int i, uint32_t blockSize, char* sizeInSI) {
int j;
if (firstLBA != 0) {
BytesToSI(blockSize * (lastLBA - firstLBA + 1), sizeInSI);
printf("%4d %14lu %14lu", i + 1, (unsigned long) firstLBA,
(unsigned long) lastLBA);
printf(" %-10s %04X ", sizeInSI,
typeHelper.GUIDToID(partitionType));
j = 0;
while ((name[j] != '\0') && (j < 44)) {
printf("%c", name[j]);
j += 2;
} // while
printf("\n");
} // if
} // GPTPart::ShowSummary()
// Show detailed partition information. Does nothing if the partition is
// empty (as determined by firstLBA being 0).
void GPTPart::ShowDetails(uint32_t blockSize) {
char temp[255];
int i;
uint64_t size;
if (firstLBA != 0) {
printf("Partition GUID code: %s ", GUIDToStr(partitionType, temp));
printf("(%s)\n", typeHelper.GUIDToName(partitionType, temp));
printf("Partition unique GUID: %s\n", GUIDToStr(uniqueGUID, temp));
printf("First sector: %llu (at %s)\n", (unsigned long long) firstLBA,
BytesToSI(firstLBA * blockSize, temp));
printf("Last sector: %llu (at %s)\n", (unsigned long long) lastLBA,
BytesToSI(lastLBA * blockSize, temp));
size = (lastLBA - firstLBA + 1);
printf("Partition size: %llu sectors (%s)\n", (unsigned long long)
size, BytesToSI(size * ((uint64_t) blockSize), temp));
printf("Attribute flags: %016llx\n", (unsigned long long) attributes);
printf("Partition name: ");
i = 0;
while ((name[i] != '\0') && (i < NAME_SIZE)) {
printf("%c", name[i]);
i += 2;
} // while
printf("\n");
} // if
} // GPTPart::ShowDetails()
/****************************************
* Functions requiring user interaction *
****************************************/
// Change the type code on the partition.
void GPTPart::ChangeType(void) {
char typeName[255], line[255];
int typeNum = 0xFFFF;
// uint16_t typeNum = 0xFFFF;
GUIDData newType;
printf("Current type is '%s'\n", GetNameType(line));
// printf("Current type is '%s'\n", typeHelper.GUIDToName(partitionType, typeName));
while ((!typeHelper.Valid(typeNum)) && (typeNum != 0)) {
printf("Hex code (L to show codes, 0 to enter raw code): ");
fgets(line, 255, stdin);
sscanf(line, "%X", &typeNum);
if ((line[0] == 'L') || (line[0] == 'l'))
typeHelper.ShowTypes();
} // while
if (typeNum != 0) // user entered a code, so convert it
newType = typeHelper.IDToGUID((uint16_t) typeNum);
else // user wants to enter the GUID directly, so do that
newType = GetGUID();
partitionType = newType;
printf("Changed system type of partition to '%s'\n",
typeHelper.GUIDToName(partitionType, typeName));
} // GPTPart::ChangeType()
// Set the name for a partition to theName, or prompt for a name if
// theName is a NULL pointer. Note that theName is a standard C-style
// string, although the GUID partition definition requires a UTF-16LE
// string. This function creates a simple-minded copy for this.
void GPTPart::SetName(unsigned char* theName) {
char newName[NAME_SIZE]; // New name
int i;
// Blank out new name string, just to be on the safe side....
for (i = 0; i < NAME_SIZE; i++)
newName[i] = '\0';
if (theName == NULL) { // No name specified, so get one from the user
printf("Enter name: ");
fgets(newName, NAME_SIZE / 2, stdin);
// Input is likely to include a newline, so remove it....
i = strlen(newName);
if (newName[i - 1] == '\n')
newName[i - 1] = '\0';
} else {
strcpy(newName, (char*) theName);
} // if
// Copy the C-style ASCII string from newName into a form that the GPT
// table will accept....
for (i = 0; i < NAME_SIZE; i++) {
if ((i % 2) == 0) {
name[i] = newName[(i / 2)];
} else {
name[i] = '\0';
} // if/else
} // for
} // GPTPart::SetName()
/***********************************
* Non-class but related functions *
***********************************/
// Recursive quick sort algorithm for GPT partitions. Note that if there
// are any empties in the specified range, they'll be sorted to the
// start, resulting in a sorted set of partitions that begins with
// partition 2, 3, or higher.
void QuickSortGPT(GPTPart* partitions, int start, int finish) {
uint64_t starterValue; // starting location of median partition
int left, right;
GPTPart temp;
left = start;
right = finish;
starterValue = partitions[(start + finish) / 2].GetFirstLBA();
do {
while (partitions[left].GetFirstLBA() < starterValue)
left++;
while (partitions[right].GetFirstLBA() > starterValue)
right--;
if (left <= right) {
temp = partitions[left];
partitions[left] = partitions[right];
partitions[right] = temp;
left++;
right--;
} // if
} while (left <= right);
if (start < right) QuickSortGPT(partitions, start, right);
if (finish > left) QuickSortGPT(partitions, left, finish);
} // QuickSortGPT()

89
gptpart.h Normal file
View File

@@ -0,0 +1,89 @@
//
// C++ Interface: gptpart
//
// Description: Class to implement a single GPT partition
//
//
// Author: Rod Smith <rodsmith@rodsbooks.com>, (C) 2009
//
// Copyright: See COPYING file that comes with this distribution
//
//
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#ifndef __GPTPART_H
#define __GPTPART_H
#include <stdint.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include "support.h"
#include "parttypes.h"
using namespace std;
/*****************************************
* *
* GUIDPart class and related structures *
* *
*****************************************/
class GPTPart {
protected:
// Caution: The non-static data in GUIDPart is precisely the right size
// to enable easy loading of the data directly from disk. If any
// non-static variables are added to the below, the data size will
// change and the program will stop working. This can be corrected by
// adjusting the data-load operation in GPTData::LoadMainTable() and
// GPTData::LoadSecondTableAsMain() and then removing the GUIDPart
// size check in SizesOK().
struct GUIDData partitionType;
struct GUIDData uniqueGUID;
uint64_t firstLBA;
uint64_t lastLBA;
uint64_t attributes;
unsigned char name[NAME_SIZE];
static PartTypes typeHelper;
public:
GPTPart(void);
~GPTPart(void);
// Simple data retrieval:
struct GUIDData GetType(void) {return partitionType;}
uint16_t GetHexType(void);
char* GetNameType(char* theName);
struct GUIDData GetUniqueGUID(void) {return uniqueGUID;}
uint64_t GetFirstLBA(void) {return firstLBA;}
uint64_t GetLastLBA(void) {return lastLBA;}
uint64_t GetLengthLBA(void);
uint64_t GetAttributes(void) {return attributes;}
unsigned char* GetName(unsigned char* theName);
// Simple data assignment:
void SetType(struct GUIDData t) {partitionType = t;}
void SetType(uint16_t hex) {partitionType = typeHelper.IDToGUID(hex);}
void SetUniqueGUID(struct GUIDData u) {uniqueGUID = u;}
void SetUniqueGUID(int zeroOrRandom);
void SetFirstLBA(uint64_t f) {firstLBA = f;}
void SetLastLBA(uint64_t l) {lastLBA = l;}
void SetAttributes(uint64_t a) {attributes = a;}
void SetName(unsigned char* n);
// Additional functions
GPTPart & operator=(const GPTPart & orig);
void ShowSummary(int i, uint32_t blockSize, char* sizeInSI); // display summary information (1-line)
void ShowDetails(uint32_t blockSize); // display detailed information (multi-line)
void BlankPartition(void); // empty partition of data
int DoTheyOverlap(GPTPart* other); // returns 1 if there's overlap
void ReversePartBytes(void); // reverse byte order of all integer fields
// Functions requiring user interaction
void ChangeType(void); // Change the type code
}; // struct GPTPart
// A support function that doesn't quite belong in the class....
void QuickSortGPT(GPTPart* partitions, int start, int finish);
#endif