Refactor uses_allocator test types for upcoming fixes

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@289197 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier
2016-12-09 09:51:09 +00:00
parent 11715ba8e2
commit e386ad3090
9 changed files with 665 additions and 377 deletions

View File

@@ -23,7 +23,12 @@
#include <tuple>
#include <cassert>
#include <cstdlib>
#include "test_macros.h"
#include "test_memory_resource.hpp"
#include "uses_alloc_types.hpp"
#include "controlled_allocators.hpp"
#include "test_allocator.h"
namespace ex = std::experimental::pmr;

View File

@@ -23,7 +23,12 @@
#include <tuple>
#include <cassert>
#include <cstdlib>
#include "test_macros.h"
#include "test_memory_resource.hpp"
#include "uses_alloc_types.hpp"
#include "controlled_allocators.hpp"
#include "test_allocator.h"
namespace ex = std::experimental::pmr;

View File

@@ -23,7 +23,12 @@
#include <tuple>
#include <cassert>
#include <cstdlib>
#include "test_macros.h"
#include "test_memory_resource.hpp"
#include "uses_alloc_types.hpp"
#include "controlled_allocators.hpp"
#include "test_allocator.h"
namespace ex = std::experimental::pmr;

View File

@@ -24,7 +24,11 @@
#include <tuple>
#include <cassert>
#include <cstdlib>
#include "test_macros.h"
#include "test_memory_resource.hpp"
#include "uses_alloc_types.hpp"
#include "controlled_allocators.hpp"
#include "test_allocator.h"
namespace ex = std::experimental::pmr;

View File

@@ -21,7 +21,11 @@
#include <type_traits>
#include <cassert>
#include <cstdlib>
#include "test_macros.h"
#include "test_memory_resource.hpp"
#include "uses_alloc_types.hpp"
#include "controlled_allocators.hpp"
#include "test_allocator.h"
namespace ex = std::experimental::pmr;

View File

@@ -0,0 +1,498 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef SUPPORT_CONTROLLED_ALLOCATORS_HPP
#define SUPPORT_CONTROLLED_ALLOCATORS_HPP
#include <memory>
#include <type_traits>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <cstdint>
#include <cassert>
#include "test_macros.h"
#include "type_id.h"
struct AllocController;
// 'AllocController' is a concrete type that instruments and controls the
// behavior of of test allocators.
template <class T, size_t ID = 0>
class CountingAllocator;
// 'CountingAllocator' is an basic implementation of the 'Allocator'
// requirements that use the 'AllocController' interface.
template <class T>
class MinAlignAllocator;
// 'MinAlignAllocator' is an instrumented test type which implements the
// 'Allocator' requirements. 'MinAlignAllocator' ensures that it *never*
// returns a pointer to over-aligned storage. For example
// 'MinAlignPointer<char>{}.allocate(...)' will never a 2-byte aligned
// pointer.
template <class T>
class NullAllocator;
// 'NullAllocator' is an instrumented test type which implements the
// 'Allocator' requirements except that 'allocator' and 'deallocate' are
// nops.
#define DISALLOW_COPY(Type) \
Type(Type const&) = delete; \
Type& operator=(Type const&) = delete
constexpr std::size_t MaxAlignV = alignof(std::max_align_t);
struct TestException {};
struct AllocController {
int copy_constructed = 0;
int move_constructed = 0;
int alive = 0;
int alloc_count = 0;
int dealloc_count = 0;
int is_equal_count = 0;
std::size_t alive_size;
std::size_t allocated_size;
std::size_t deallocated_size;
std::size_t last_size = 0;
std::size_t last_align = 0;
void * last_pointer = 0;
std::size_t last_alloc_size = 0;
std::size_t last_alloc_align = 0;
void * last_alloc_pointer = nullptr;
std::size_t last_dealloc_size = 0;
std::size_t last_dealloc_align = 0;
void * last_dealloc_pointer = nullptr;
bool throw_on_alloc = false;
int construct_called = 0;
void *last_construct_pointer = nullptr;
TypeID const* last_construct_alloc = nullptr;
TypeID const* last_construct_type = nullptr;
TypeID const* last_construct_args = nullptr;
int destroy_called = 0;
void *last_destroy_pointer = nullptr;
TypeID const* last_destroy_alloc = nullptr;
TypeID const* last_destroy_type = nullptr;
AllocController() = default;
void countAlloc(void* p, size_t s, size_t a) {
++alive;
++alloc_count;
alive_size += s;
allocated_size += s;
last_pointer = last_alloc_pointer = p;
last_size = last_alloc_size = s;
last_align = last_alloc_align = a;
}
void countDealloc(void* p, size_t s, size_t a) {
--alive;
++dealloc_count;
alive_size -= s;
deallocated_size += s;
last_pointer = last_dealloc_pointer = p;
last_size = last_dealloc_size = s;
last_align = last_dealloc_align = a;
}
template <class ...Args, class Alloc, class Tp>
void countConstruct(Alloc const& a, Tp *p) {
++construct_called;
last_construct_pointer = p;
last_construct_alloc = &makeTypeID<Alloc>();
last_construct_type = &makeTypeID<Tp>();
last_construct_args = &makeArgumentID<Args...>();
}
template <class Alloc, class Tp>
void countDestroy(Alloc const& a, Tp *p) {
++destroy_called;
last_destroy_alloc = &makeTypeID<Alloc>();
last_destroy_type = &makeTypeID<Tp>();
last_destroy_pointer = p;
}
void reset() { std::memset(this, 0, sizeof(*this)); }
void resetConstructDestroy() {
construct_called = 0;
last_construct_pointer = nullptr;
last_construct_alloc = last_construct_args = last_construct_type = nullptr;
destroy_called = 0;
last_destroy_alloc = nullptr;
last_destroy_pointer = nullptr;
}
public:
bool checkAlloc(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s == last_alloc_size &&
a == last_alloc_align;
}
bool checkAlloc(void* p, size_t s) const {
return p == last_alloc_pointer &&
s == last_alloc_size;
}
bool checkAllocAtLeast(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s <= last_alloc_size &&
a <= last_alloc_align;
}
bool checkAllocAtLeast(void* p, size_t s) const {
return p == last_alloc_pointer &&
s <= last_alloc_size;
}
bool checkDealloc(void* p, size_t s, size_t a) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size &&
a == last_dealloc_align;
}
bool checkDealloc(void* p, size_t s) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size;
}
bool checkDeallocMatchesAlloc() const {
return last_dealloc_pointer == last_alloc_pointer &&
last_dealloc_size == last_alloc_size &&
last_dealloc_align == last_alloc_align;
}
template <class ...Args, class Alloc, class Tp>
bool checkConstruct(Alloc const&, Tp *p) const {
auto expectAlloc = &makeTypeID<Alloc>();
auto expectTp = &makeTypeID<Tp>();
auto expectArgs = &makeArgumentID<Args...>();
return last_construct_pointer == p &&
COMPARE_TYPEID(last_construct_alloc, expectAlloc) &&
COMPARE_TYPEID(last_construct_type, expectTp) &&
COMPARE_TYPEID(last_construct_args, expectArgs);
}
template <class Alloc, class Tp>
bool checkDestroy(Alloc const&, Tp *p) const {
return last_destroy_pointer == p &&
last_destroy_alloc == &makeTypeID<Alloc>() &&
last_destroy_type == &makeTypeID<Tp>();
}
bool checkDestroyMatchesConstruct() const {
return last_destroy_pointer == last_construct_pointer &&
last_destroy_type == last_construct_type;
}
void countIsEqual() {
++is_equal_count;
}
bool checkIsEqualCalledEq(int n) const {
return is_equal_count == n;
}
private:
DISALLOW_COPY(AllocController);
};
template <class T, size_t ID>
class CountingAllocator
{
public:
typedef T value_type;
typedef T* pointer;
template <class U>
struct rebind { using other = CountingAllocator<U, ID>; };
CountingAllocator() = delete;
explicit CountingAllocator(AllocController& PP) : P(&PP) {}
CountingAllocator(CountingAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
CountingAllocator(CountingAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U, ID> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U, ID>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
void* ret = ::operator new(n*sizeof(T));
P->countAlloc(ret, n*sizeof(T), alignof(T));
return static_cast<T*>(ret);
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
::operator delete(vp);
}
template <class U, class ...Args>
void construct(U *p, Args&&... args) {
auto *c = ::new ((void*)p) U(std::forward<Args>(args)...);
P->countConstruct<Args&&...>(*this, p);
}
template <class U>
void destroy(U* p) {
p->~U();
P->countDestroy(*this, p);
}
AllocController& getController() const { return *P; }
private:
template <class Tp, size_t XID> friend class CountingAllocator;
AllocController *P;
};
template <size_t ID>
class CountingAllocator<void, ID>
{
public:
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class U>
struct rebind { using other = CountingAllocator<U, ID>; };
CountingAllocator() = delete;
explicit CountingAllocator(AllocController& PP) : P(&PP) {}
CountingAllocator(CountingAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
CountingAllocator(CountingAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U, ID> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U, ID>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
void construct(...) = delete;
void destroy(void*) = delete;
AllocController& getController() const { return *P; }
private:
template <class Tp, size_t> friend class CountingAllocator;
AllocController *P;
};
template <class T, class U, size_t ID>
inline bool operator==(CountingAllocator<T, ID> const& x,
CountingAllocator<U, ID> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U, size_t ID>
inline bool operator!=(CountingAllocator<T, ID> const& x,
CountingAllocator<U, ID> const& y) {
return !(x == y);
}
template <class T>
class MinAlignedAllocator
{
public:
typedef T value_type;
typedef T* pointer;
MinAlignedAllocator() = delete;
explicit MinAlignedAllocator(AllocController& R) : P(&R) {}
MinAlignedAllocator(MinAlignedAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
MinAlignedAllocator(MinAlignedAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n) {
char* aligned_ptr = (char*)::operator new(alloc_size(n*sizeof(T)));
assert(is_max_aligned(aligned_ptr));
char* unaligned_ptr = aligned_ptr + alignof(T);
assert(is_min_aligned(unaligned_ptr));
P->countAlloc(unaligned_ptr, n * sizeof(T), alignof(T));
return ((T*)unaligned_ptr);
}
void deallocate(T* p, std::size_t n) {
assert(is_min_aligned(p));
char* aligned_ptr = ((char*)p) - alignof(T);
assert(is_max_aligned(aligned_ptr));
P->countDealloc(p, n*sizeof(T), alignof(T));
return ::operator delete(static_cast<void*>(aligned_ptr));
}
template <class U, class ...Args>
void construct(U *p, Args&&... args) {
auto *c = ::new ((void*)p) U(std::forward<Args>(args)...);
P->countConstruct<Args&&...>(*this, p);
}
template <class U>
void destroy(U* p) {
p->~U();
P->countDestroy(*this, p);
}
AllocController& getController() const { return *P; }
private:
static const std::size_t BlockSize = alignof(std::max_align_t);
static std::size_t alloc_size(std::size_t s) {
std::size_t bytes = (s + BlockSize - 1) & ~(BlockSize - 1);
bytes += BlockSize;
assert(bytes % BlockSize == 0);
return bytes;
}
static bool is_max_aligned(void* p) {
return reinterpret_cast<std::uintptr_t>(p) % BlockSize == 0;
}
static bool is_min_aligned(void* p) {
if (alignof(T) == BlockSize) {
return is_max_aligned(p);
} else {
return reinterpret_cast<std::uintptr_t>(p) % BlockSize == alignof(T);
}
}
template <class Tp> friend class MinAlignedAllocator;
mutable AllocController *P;
};
template <class T, class U>
inline bool operator==(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return !(x == y);
}
template <class T>
class NullAllocator
{
public:
typedef T value_type;
typedef T* pointer;
NullAllocator() = delete;
explicit NullAllocator(AllocController& PP) : P(&PP) {}
NullAllocator(NullAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
NullAllocator(NullAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
P->countAlloc(nullptr, n*sizeof(T), alignof(T));
return nullptr;
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
}
AllocController& getController() const { return *P; }
private:
template <class Tp> friend class NullAllocator;
AllocController *P;
};
template <class T, class U>
inline bool operator==(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return !(x == y);
}
#endif /* SUPPORT_CONTROLLED_ALLOCATORS_HPP */

View File

@@ -11,6 +11,7 @@
#define SUPPORT_TEST_MEMORY_RESOURCE_HPP
#include <experimental/memory_resource>
#include <experimental/utility>
#include <memory>
#include <type_traits>
#include <cstddef>
@@ -19,354 +20,17 @@
#include <cstdint>
#include <cassert>
#include "test_macros.h"
#include "controlled_allocators.hpp"
#include "uses_alloc_types.hpp"
struct AllocController;
// 'AllocController' is a concrete type that instruments and controls the
// behavior of of test allocators.
template <class T>
class CountingAllocator;
// 'CountingAllocator' is an basic implementation of the 'Allocator'
// requirements that use the 'AllocController' interface.
template <class T>
class MinAlignAllocator;
// 'MinAlignAllocator' is an instrumented test type which implements the
// 'Allocator' requirements. 'MinAlignAllocator' ensures that it *never*
// returns a pointer to over-aligned storage. For example
// 'MinAlignPointer<char>{}.allocate(...)' will never a 2-byte aligned
// pointer.
template <class T>
class NullAllocator;
// 'NullAllocator' is an instrumented test type which implements the
// 'Allocator' requirements except that 'allocator' and 'deallocate' are
// nops.
#define DISALLOW_COPY(Type) \
Type(Type const&) = delete; \
Type& operator=(Type const&) = delete
constexpr std::size_t MaxAlignV = alignof(std::max_align_t);
struct TestException {};
struct AllocController {
int copy_constructed = 0;
int move_constructed = 0;
int alive = 0;
int alloc_count = 0;
int dealloc_count = 0;
int is_equal_count = 0;
std::size_t alive_size;
std::size_t allocated_size;
std::size_t deallocated_size;
std::size_t last_size = 0;
std::size_t last_align = 0;
void * last_pointer = 0;
std::size_t last_alloc_size = 0;
std::size_t last_alloc_align = 0;
void * last_alloc_pointer = nullptr;
std::size_t last_dealloc_size = 0;
std::size_t last_dealloc_align = 0;
void * last_dealloc_pointer = nullptr;
bool throw_on_alloc = false;
AllocController() = default;
void countAlloc(void* p, size_t s, size_t a) {
++alive;
++alloc_count;
alive_size += s;
allocated_size += s;
last_pointer = last_alloc_pointer = p;
last_size = last_alloc_size = s;
last_align = last_alloc_align = a;
}
void countDealloc(void* p, size_t s, size_t a) {
--alive;
++dealloc_count;
alive_size -= s;
deallocated_size += s;
last_pointer = last_dealloc_pointer = p;
last_size = last_dealloc_size = s;
last_align = last_dealloc_align = a;
}
void reset() { std::memset(this, 0, sizeof(*this)); }
public:
bool checkAlloc(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s == last_alloc_size &&
a == last_alloc_align;
}
bool checkAlloc(void* p, size_t s) const {
return p == last_alloc_pointer &&
s == last_alloc_size;
}
bool checkAllocAtLeast(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s <= last_alloc_size &&
a <= last_alloc_align;
}
bool checkAllocAtLeast(void* p, size_t s) const {
return p == last_alloc_pointer &&
s <= last_alloc_size;
}
bool checkDealloc(void* p, size_t s, size_t a) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size &&
a == last_dealloc_align;
}
bool checkDealloc(void* p, size_t s) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size;
}
bool checkDeallocMatchesAlloc() const {
return last_dealloc_pointer == last_alloc_pointer &&
last_dealloc_size == last_alloc_size &&
last_dealloc_align == last_alloc_align;
}
void countIsEqual() {
++is_equal_count;
}
bool checkIsEqualCalledEq(int n) const {
return is_equal_count == n;
}
private:
DISALLOW_COPY(AllocController);
// FIXME: This is a hack to allow uses_allocator_types.hpp to work with
// erased_type. However we can't define that behavior directly in the header
// because it con't include <experimental/memory_resource>
template <>
struct TransformErasedTypeAlloc<std::experimental::erased_type> {
using type = std::experimental::pmr::memory_resource*;
};
template <class T>
class CountingAllocator
{
public:
typedef T value_type;
typedef T* pointer;
CountingAllocator() = delete;
explicit CountingAllocator(AllocController& PP) : P(&PP) {}
CountingAllocator(CountingAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
CountingAllocator(CountingAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
void* ret = ::operator new(n*sizeof(T));
P->countAlloc(ret, n*sizeof(T), alignof(T));
return static_cast<T*>(ret);
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
::operator delete(vp);
}
AllocController& getController() const { return *P; }
private:
template <class Tp> friend class CountingAllocator;
AllocController *P;
};
template <class T, class U>
inline bool operator==(CountingAllocator<T> const& x,
CountingAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(CountingAllocator<T> const& x,
CountingAllocator<U> const& y) {
return !(x == y);
}
template <class T>
class MinAlignedAllocator
{
public:
typedef T value_type;
typedef T* pointer;
MinAlignedAllocator() = delete;
explicit MinAlignedAllocator(AllocController& R) : P(&R) {}
MinAlignedAllocator(MinAlignedAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
MinAlignedAllocator(MinAlignedAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n) {
char* aligned_ptr = (char*)::operator new(alloc_size(n*sizeof(T)));
assert(is_max_aligned(aligned_ptr));
char* unaligned_ptr = aligned_ptr + alignof(T);
assert(is_min_aligned(unaligned_ptr));
P->countAlloc(unaligned_ptr, n * sizeof(T), alignof(T));
return ((T*)unaligned_ptr);
}
void deallocate(T* p, std::size_t n) {
assert(is_min_aligned(p));
char* aligned_ptr = ((char*)p) - alignof(T);
assert(is_max_aligned(aligned_ptr));
P->countDealloc(p, n*sizeof(T), alignof(T));
return ::operator delete(static_cast<void*>(aligned_ptr));
}
AllocController& getController() const { return *P; }
private:
static const std::size_t BlockSize = alignof(std::max_align_t);
static std::size_t alloc_size(std::size_t s) {
std::size_t bytes = (s + BlockSize - 1) & ~(BlockSize - 1);
bytes += BlockSize;
assert(bytes % BlockSize == 0);
return bytes;
}
static bool is_max_aligned(void* p) {
return reinterpret_cast<std::uintptr_t>(p) % BlockSize == 0;
}
static bool is_min_aligned(void* p) {
if (alignof(T) == BlockSize) {
return is_max_aligned(p);
} else {
return reinterpret_cast<std::uintptr_t>(p) % BlockSize == alignof(T);
}
}
template <class Tp> friend class MinAlignedAllocator;
mutable AllocController *P;
};
template <class T, class U>
inline bool operator==(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return !(x == y);
}
template <class T>
class NullAllocator
{
public:
typedef T value_type;
typedef T* pointer;
NullAllocator() = delete;
explicit NullAllocator(AllocController& PP) : P(&PP) {}
NullAllocator(NullAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
NullAllocator(NullAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
P->countAlloc(nullptr, n*sizeof(T), alignof(T));
return nullptr;
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
}
AllocController& getController() const { return *P; }
private:
template <class Tp> friend class NullAllocator;
AllocController *P;
};
template <class T, class U>
inline bool operator==(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return !(x == y);
}
template <class ProviderT, int = 0>
class TestResourceImp : public std::experimental::pmr::memory_resource
{

View File

@@ -10,9 +10,13 @@
#define SUPPORT_TYPE_ID_H
#include <functional>
#include <typeinfo>
#include <string>
#include <cstdio>
#include <cassert>
#include "test_macros.h"
#include "demangle.h"
#if TEST_STD_VER < 11
#error This header requires C++11 or greater
@@ -25,25 +29,41 @@ struct TypeID {
{return LHS.m_id == RHS.m_id; }
friend bool operator!=(TypeID const& LHS, TypeID const& RHS)
{return LHS.m_id != RHS.m_id; }
std::string name() const {
return demangle(m_id);
}
void dump() const {
std::string s = name();
std::printf("TypeID: %s\n", s.c_str());
}
private:
explicit constexpr TypeID(const int* xid) : m_id(xid) {}
explicit constexpr TypeID(const char* xid) : m_id(xid) {}
TypeID(const TypeID&) = delete;
TypeID& operator=(TypeID const&) = delete;
const int* const m_id;
template <class T> friend TypeID const& makeTypeID();
const char* const m_id;
template <class T> friend TypeID const& makeTypeIDImp();
};
// makeTypeID - Return the TypeID for the specified type 'T'.
template <class T>
inline TypeID const& makeTypeID() {
static int dummy;
static const TypeID id(&dummy);
inline TypeID const& makeTypeIDImp() {
static const TypeID id(typeid(T).name());
return id;
}
template <class T>
struct TypeWrapper {};
template <class T>
inline TypeID const& makeTypeID() {
return makeTypeIDImp<TypeWrapper<T>>();
}
template <class ...Args>
struct ArgumentListID {};
@@ -51,7 +71,23 @@ struct ArgumentListID {};
// of arguments.
template <class ...Args>
inline TypeID const& makeArgumentID() {
return makeTypeID<ArgumentListID<Args...>>();
return makeTypeIDImp<ArgumentListID<Args...>>();
}
// COMPARE_TYPEID(...) is a utility macro for generating diagnostics when
// two typeid's are expected to be equal
#define COMPARE_TYPEID(LHS, RHS) CompareTypeIDVerbose(#LHS, LHS, #RHS, RHS)
inline bool CompareTypeIDVerbose(const char* LHSString, TypeID const* LHS,
const char* RHSString, TypeID const* RHS) {
if (*LHS == *RHS)
return true;
std::printf("TypeID's not equal:\n");
std::printf("%s: %s\n----------\n%s: %s\n",
LHSString, LHS->name().c_str(),
RHSString, RHS->name().c_str());
return false;
}
#endif // SUPPORT_TYPE_ID_H

View File

@@ -10,12 +10,11 @@
#ifndef USES_ALLOC_TYPES_HPP
#define USES_ALLOC_TYPES_HPP
# include <experimental/memory_resource>
# include <experimental/utility>
# include <memory>
# include <cassert>
#include <cstdlib>
#include "test_memory_resource.hpp"
#include "test_macros.h"
#include "type_id.h"
// There are two forms of uses-allocator construction:
@@ -31,6 +30,30 @@ constexpr UsesAllocatorType UA_None = UsesAllocatorType::UA_None;
constexpr UsesAllocatorType UA_AllocArg = UsesAllocatorType::UA_AllocArg;
constexpr UsesAllocatorType UA_AllocLast = UsesAllocatorType::UA_AllocLast;
inline const char* toString(UsesAllocatorType UA) {
switch (UA) {
case UA_None:
return "UA_None";
case UA_AllocArg:
return "UA_AllocArg";
case UA_AllocLast:
return "UA_AllocLast";
default:
std::abort();
}
}
#define COMPARE_ALLOC_TYPE(LHS, RHS) CompareVerbose(#LHS, LHS, #RHS, RHS)
inline bool CompareVerbose(const char* LHSString, UsesAllocatorType LHS,
const char* RHSString, UsesAllocatorType RHS) {
if (LHS == RHS)
return true;
std::printf("UsesAllocatorType's don't match:\n%s %s\n----------\n%s %s\n",
LHSString, toString(LHS), RHSString, toString(RHS));
return false;
}
template <class Alloc, std::size_t N>
class UsesAllocatorV1;
// Implements form (1) of uses-allocator construction from the specified
@@ -115,66 +138,107 @@ using EnableIfB = typename std::enable_if<Value, bool>::type;
} // end namespace detail
// FIXME: UsesAllocatorTestBase needs some special logic to deal with
// polymorphic allocators. However we don't want to include
// <experimental/memory_resource> in this header. Therefore in order
// to inject this behavior later we use a trait.
// See test_memory_resource.hpp for more info.
template <class Alloc>
struct TransformErasedTypeAlloc {
using type = Alloc;
};
using detail::EnableIfB;
struct AllocLastTag {};
template <class Alloc, bool = std::is_default_constructible<Alloc>::value>
struct UsesAllocatorTestBaseStorage {
Alloc allocator;
UsesAllocatorTestBaseStorage() = default;
UsesAllocatorTestBaseStorage(Alloc const& a) : allocator(a) {}
const Alloc* get_allocator() const { return &allocator; }
};
template <class Alloc>
struct UsesAllocatorTestBaseStorage<Alloc, false> {
union {
char dummy;
Alloc alloc;
};
bool has_alloc = false;
UsesAllocatorTestBaseStorage() : dummy(), has_alloc(false) {}
UsesAllocatorTestBaseStorage(Alloc const& a) : alloc(a), has_alloc(true) {}
~UsesAllocatorTestBaseStorage() {
if (has_alloc)
alloc.~Alloc();
}
Alloc const* get_allocator() const {
if (!has_alloc)
return nullptr;
return &alloc;
}
};
template <class Self, class Alloc>
struct UsesAllocatorTestBase {
public:
using CtorAlloc = typename std::conditional<
std::is_same<Alloc, std::experimental::erased_type>::value,
std::experimental::pmr::memory_resource*,
Alloc
>::type;
using CtorAlloc = typename TransformErasedTypeAlloc<Alloc>::type;
template <class ...ArgTypes>
bool checkConstruct(UsesAllocatorType expectType) const {
return expectType == constructor_called &&
makeArgumentID<ArgTypes...>() == *args_id;
auto expectArgs = &makeArgumentID<ArgTypes...>();
return COMPARE_ALLOC_TYPE(expectType, constructor_called) &&
COMPARE_TYPEID(args_id, expectArgs);
}
template <class ...ArgTypes>
bool checkConstruct(UsesAllocatorType expectType,
CtorAlloc const& expectAlloc) const {
return expectType == constructor_called &&
makeArgumentID<ArgTypes...>() == *args_id &&
expectAlloc == allocator;
auto ExpectID = &makeArgumentID<ArgTypes...>() ;
return COMPARE_ALLOC_TYPE(expectType, constructor_called) &&
COMPARE_TYPEID(args_id, ExpectID) &&
has_alloc() && expectAlloc == *get_alloc();
}
bool checkConstructEquiv(UsesAllocatorTestBase& O) const {
return constructor_called == O.constructor_called
&& *args_id == *O.args_id
&& allocator == O.allocator;
if (has_alloc() != O.has_alloc())
return false;
return COMPARE_ALLOC_TYPE(constructor_called, O.constructor_called)
&& COMPARE_TYPEID(args_id, O.args_id)
&& (!has_alloc() || *get_alloc() == *O.get_alloc());
}
protected:
explicit UsesAllocatorTestBase(const TypeID* aid)
: args_id(aid), constructor_called(UA_None), allocator()
: args_id(aid), constructor_called(UA_None), alloc_store()
{}
UsesAllocatorTestBase(UsesAllocatorTestBase const&)
: args_id(&makeArgumentID<Self const&>()), constructor_called(UA_None),
allocator()
alloc_store()
{}
UsesAllocatorTestBase(UsesAllocatorTestBase&&)
: args_id(&makeArgumentID<Self&&>()), constructor_called(UA_None),
allocator()
alloc_store()
{}
template <class ...Args>
UsesAllocatorTestBase(std::allocator_arg_t, CtorAlloc const& a, Args&&...)
: args_id(&makeArgumentID<Args&&...>()),
constructor_called(UA_AllocArg),
allocator(a)
alloc_store(a)
{}
template <class ...Args, class ArgsIDL = detail::TakeNArgs<sizeof...(Args) - 1, Args&&...>>
UsesAllocatorTestBase(AllocLastTag, Args&&... args)
: args_id(&makeTypeID<typename ArgsIDL::type>()),
: args_id(&makeTypeIDImp<typename ArgsIDL::type>()),
constructor_called(UA_AllocLast),
allocator(getAllocatorFromPack(
alloc_store(UsesAllocatorTestBase::getAllocatorFromPack(
typename ArgsIDL::type{},
std::forward<Args>(args)...))
{
@@ -183,7 +247,7 @@ protected:
private:
template <class ...LArgs, class ...Args>
static CtorAlloc getAllocatorFromPack(ArgumentListID<LArgs...>, Args&&... args) {
return getAllocatorFromPackImp<LArgs const&...>(args...);
return UsesAllocatorTestBase::getAllocatorFromPackImp<LArgs const&...>(args...);
}
template <class ...LArgs>
@@ -191,10 +255,13 @@ private:
typename detail::Identity<LArgs>::type..., CtorAlloc const& alloc) {
return alloc;
}
bool has_alloc() const { return alloc_store.get_allocator() != nullptr; }
const CtorAlloc *get_alloc() const { return alloc_store.get_allocator(); }
public:
const TypeID* args_id;
UsesAllocatorType constructor_called = UA_None;
CtorAlloc allocator;
UsesAllocatorTestBaseStorage<CtorAlloc> alloc_store;
};
template <class Alloc, size_t Arity>